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Male peacock spiders (Maratus, Salticidae) compete to attract female mates

using elaborate, sexually selected displays. They evolved both brilliant colour

and velvety black. Here, we use scanning electron microscopy, hyperspectral

imaging and finite-difference time-domain optical modelling to investigate

the deep black surfaces of peacock spiders. We found that super black regions

reflect less than 0.5% of light (for a 308 collection angle) in Maratus speciosus
(0.44%) and Maratus karrie (0.35%) owing to microscale structures. Both species

evolved unusually high, tightly packed cuticular bumps (microlens arrays),

and M. karrie has an additional dense covering of black brush-like scales atop

the cuticle. Our optical models show that the radius and height of spider micro-

lenses achieve a balance between (i) decreased surface reflectance and (ii)

enhanced melanin absorption (through multiple scattering, diffraction out of

the acceptance cone of female eyes and increased path length of light through

absorbing melanin pigments). The birds of paradise (Paradiseidae), ecological

analogues of peacock spiders, also evolved super black near bright colour

patches. Super black locally eliminates white specular highlights, reference

points used to calibrate colour perception, making nearby colours appear

brighter, even luminous, tovertebrates. We propose that this pre-existing, quali-

tative sensory experience—‘sensory bias’—is also found in spiders, leading to

the convergent evolution of super black for mating displays in jumping spiders.
1. Background
Colour plays a number of roles in inter- or intra-specific visual signalling, includ-

ing camouflage, mimicry, warning coloration and social signalling [1]. Some of

the most elaborate colour displays have evolved because of sexual selection by

mate choice [2–5], exemplified by the peacock spiders (Maratus, Salticidae [6]),

which are subject to unusually intense sexual selection [7]. Among males, com-

petition to be preferred by females and secure mating opportunities has

produced innovative visual traits at multiple size scales [6,8–11]. Investigating

these stimulating visual displays can (i) reveal novel colour-producing mechan-

isms [10,12], (ii) inform our understanding of animals’ visual ecology and

sensory experiences [8,13], and (iii) guide the design of human-made devices

for colour production and other forms of light manipulation [12].
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Figure 1. Deep black patches alongside brilliant colours in peacock spiders (a – g), and a closely related shiny black spider (h). (a) Maratus speciosus, (b) Maratus
karrie, (c) Maratus nigromaculatus, (d ) Maratus robinsoni, (e) Maratus hortorum, ( f ) Maratus avibus, (g) Maratus chrysomelas and (h) Cylistella sp. Scale bars are all
1 mm; for (a – g), they are estimated based on species-typical size. Scale bars are taken from: (a,b) specimen measurements herein, (c) [20,21], (d ) [20], (e) [22],
( f ) [23], (g) [24] and (h) Facundo Martı́n Labarque. Pictures are courtesy of (a – g) Jürgen Otto and (h) Facundo Martı́n Labarque and may not be reproduced.
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The highly visual, polygynous jumping spiders (Saltici-

dae) have elaborate displays of bright colours and

behaviours [6,14]. Particularly, male jumping spiders of the

genus Maratus, known as peacock spiders, have splendidly

coloured abdomens which they erect and wave side-to-side

during mating displays to females [6,8,9]. Structural colours

in peacock spiders are produced by plate-like blue scales

(modified setae) with a dual thin film structure [10] or rain-

bow scales with two-dimensional diffraction gratings atop a

convex three-dimensional microstructure [12]. Brush-like

scales produce cream, yellow or red colours through pig-

ments in combination with structural effects [10,14]. Other

brush-like black scales contain melanins [12,15]. There is

strong mate choice by female peacock spiders for strikingly

bright and bold colour patterns; jumping spiders have

acute colour vision [16,17] and colourful male ornaments

are the direct targets of female choice [7,18,19]. Furthermore,

female peacock spiders are extremely choosy and usually

mate only once [6]. Therefore, males are under powerful

selective pressure to fulfil female preferences.

Intriguingly, males of many species of peacock spiders

have dark, velvety black patches adjacent to bright colour

patches (figure 1). This is reminiscent of the super black

plumage near bright colours in the birds of paradise (Paradi-

saeidae), which are also subject to intense sexual selection

[25] and have evolved extraordinarily elaborate mating

displays [26–30]. Many male birds of paradise evolved

deep velvet, ‘super black’ plumages near bright colour

[26,28,30,31]; super black is produced by multiple scattering
among barbule microstructures which greatly enhances the

efficiency of melanin absorption [31]. More generally, super

black is defined as structural or structurally assisted absorption

with significantly reduced specular reflectance compared

to that of a flat (unstructured) surface of the same material

[31–33]. In nature, anti-reflection (whether in combination

with pigmentary absorption or not) has evolved in moth

eyes to reduce glare [34], in transparent aquatic animals to

evade detection [35], in glasswing butterflies to avoid avian

predators [36], in velvet black spots on a viper to merge into

shadows on the forest floor [37] and more—and frequently

has inspired anti-reflective engineered materials (e.g. [38]).

Super black coloration is extremely low reflectance (e.g. less

than 0.5% directional reflectance in birds of paradise),

approaching the darkest human-made materials available

[39–41]; this raises the question of why such an intricate,

extreme trait evolved. In birds of paradise, super black may

have evolved through sensory bias [31], whereby a trait stimu-

lates pre-existing sensory/cognitive biases and preferences in

females [4,42,43]. Specifically, in a variety of vertebrates,

super black surfaces impede natural mechanisms of colour cor-

rection by removing white specular highlights that are used as

white-balancing reference points, causing nearby colours to

appear brighter—even luminescent [44–46]. Are the velvety

black patches in peacock spiders a convergent example of

structurally assisted super black for colour emphasis? If so,

this implies (i) a widespread sensory bias intrinsic to colour

vision in distantly related species, and (ii) a significant role

for sensory bias at the extremes of competitive sexual selection.
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Here, we characterize the spectral reflectance and surface

microstructures of the black areas in two brilliant and boldly

patterned species of peacock spiders, Maratus speciosus
(figure 1a) and Maratus karrie (figure 1b). We use hyper-

spectral analysis, scanning electron microscopy (SEM) and

finite-difference time-domain (FDTD) modelling of the inter-

action between the structures and incident electromagnetic

field. We determine that they use super black, structurally

assisted absorption in their displays, which are much less

reflective than the normal black cuticle of a closely related

normal black spider (Cylistella sp., which has no bright col-

ours), and comparable in reflectance to super black bird of

paradise plumages. Moreover, we observe a new, distinct

type of microstructure in super black spiders different than

those previously described in birds of paradise. Maratus has

brush-like scales similar to the bird of paradise feathers, but

also has novel anti-reflective microlens arrays. Based on

FDTD modelling, we propose a mechanism for the reduced

reflectance and increased light absorption. We further demon-

strate that the spiders’ microstructural features are roughly at

an optimum for the microstructures to achieve minimal reflec-

tance and maximal absorption in the melanin layer.

2. Methods
(a) Specimen details
All spider specimens were obtained from the Harvard Museum

of Comparative Zoology Invertebrate Zoology collections, and

both bird specimens are from the Yale Peabody Museum of

Natural History Ornithological Collections. Note that multiple

individual specimens are identified by a single specimen number

because they are curated in lots of approximately 3–10 individuals

from the same locality and collection date in a single jar.

(b) Scanning electron microscopy
Spiders were dried, mounted and sputter-coated with 10 nm of

Pt/Pd to prepare for SEM. SEM images were taken on an

FESEM Ultra55, and measurements were taken from these

images using IMAGEJ. The location of SEM images on the specimens

is indicated in the electronic supplementary material, figure S1.

(c) Hyperspectral imaging
To record reflectance spectra for these spiders, standard

spectroscopy could not be used owing to their small size

(approx. 2–5 mm in diameter, with even smaller velvety black

regions). Therefore, we used a form of microspectrophotometry

which captures an image where every pixel encodes a reflectance

spectrum between wavelengths 420 and 1000 nm, normalized by

a mirror standard (Thorlabs Inc.). We used a Horiba and Cyto-

viva Model XploRA hyperspectral microscope with

MICROMANAGER and ENVI software (issue 4.8). The light source

was a DC-950 Fiber-Lite (Colan-Jenner Industries). We used a

50� microscope objective (numerical aperture 0.5) and exposure

time of 1000 ms for the super black regions. The mirror standard

was too reflective for this exposure time, so we used exposure

100 ms and multiplied all values by 10 (we could perform a

linear transformation because the charged-coupled device is a

linear detector for the intensities employed). To control for back-

ground noise from our instruments, we normalized all

measurements by the lamp spectrum; to ensure there was no

background noise from ambient conditions, we turned off the

light source and took a hyperspectral measurement.

From the resulting hyperspectral images, we averaged 10

reflectance spectra from points that were in focus on the image
(limited owing to the curvature of spider bodies). To calculate

total %-reflectance, we integrated a loess (locally estimated scatter-

plot smoothing) curve from wavelengths 420–700 and divided the

result by the integral of a perfect mirror reflectance standard with

reflectance ¼ 100% for the studied 280 nm wavelength span. We

performed this analysis with all three species of spiders and with

one species from the bird of paradise (Paradisaeidae), which were

previously characterized [31], in order to validate the procedure.

We ensured that the black patches did not reflect in the

ultraviolet range through multispectral imaging of one male

specimen of each species and a female M. speciosus (electronic

supplementary material, figure S2).

Specimens stored in ethanol may have changes in colour

owing to pigment leaching; before hyperspectral imaging, we

allowed the spiders to dry for 60 s in air (surface drying of Mar-
atus restores the original colour [20]). Further, we were

quantitatively analysing the ‘darkness’ of a region; if melanin

had been leached, our measurements of the ‘darkness’ of a

region are an underestimation, implying that the super black

effect is even more pronounced in live peacock spiders.
(d) Optical modelling
FDTD simulations were performed using the commercially avail-

able software LUMERICAL FDTD, which employs the standard Yee

cell method [47] to calculate the spatio-temporal electromagnetic

field distribution resulting from an initial pulse launched into the

simulation domain. Each real microlens (figure 2a) has a super-

ellipsoidal shape (figure 2b–d), described by the following

function (equation (2.1)), with characteristic structure size, R0,

height, h0, elongation, e0, and shape N (where N ¼ 2 corresponds

to an ellipsoid and N ¼ 1 is near-pyramidal in the x-direction)

z(x,y) ¼ R0h0 1� x
R0

����
����
N

� y
R0e0

����
����
2

" # ffiffiffiffiffi
2N�2
p
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The structures were discretized such that at least 50 mesh

elements per half-width were used in each Cartesian direction,

with a maximum mesh element size of 30 nm. For the air

region outside of the structure, the built-in mesh of 2 was used

in the z-direction.

In calculating reflectance, three collection angles are of inter-

est: (i) 308 to match the microscope set-up, (ii) 908 to obtain the

total reflected light, and (iii) 128, an estimate of the collection

angle of female eyes approximately 0.85 mm from end-to-end

facing an approximately 2.1 mm male abdomen sitting approxi-

mately 7 mm away (figure 2e,f ). Although female peacock spider

eyes have an impressive field of view of 588 [48], only rays

reflected or emitted from the male’s abdomen that intersect her

eyes are relevant to our work.

For this work, a plane wave was normally incident

(z-direction) on an infinite array of microstructures in the (x,y)-

plane. The simulation domain was bounded in the z-direction

by perfectly matched layers (PMLs) while symmetry and anti-

symmetry boundary conditions were used in the x and y
directions, depending on which polarization was chosen for

the incident light. All presented results are averages of two simu-

lations with orthogonal polarization. Frequency domain field

monitors were placed above and below the structure to collect

the reflected and transmitted light, respectively. A hexagonal

packing was chosen in order to emulate the predominant pack-

ing observed in the SEMs of the two studied spider species.

The electromagnetic pulse spanned the wavelength range of

approximately 350–750 nm (in order to ensure an appreciable

field strength in the range of interest, 400–700 nm). PML bound-

aries and monitors were spaced a distance of at least lmax/2

apart from each other and from the structure. The simulation

was terminated with an auto shutoff level of 1024. The built-in
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Figure 2. FDTD simulations confirm that spider-like microlens arrays cause path length increase and decrease specular reflectance. (a) SEM micrograph of a group of
microlenses of M. speciosus in a super black region. (b) Perspective view of single microlens in the simulation of an infinite hexagonal array. (c) xz perspective and
(d ) top views of the single microlens, including definitions of the geometrical parameters used in the simulation. (e) Schematic of grating-like behaviour (showing
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abdomen is approximately 2.1 mm wide. Photo courtesy of Jürgen Otto and may not be reproduced. (g) Contour maps showing the dependence of reflectance (left)
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grating projection function was used to decompose the fields col-

lected by the monitors into sets of planar waves travelling in

different directions, u. For the reflection, these directions are

equivalent to the diffraction angle, where angles larger than

the acceptance angle (either defined by the choice of microscopy

objective or position of the spiders during courtship) were fil-

tered out. For the transmission, the travelling angles were used

to calculate the increase in path length compared to a flat surface,

which would not refract normally incident light; the increase in

path length is thus given by D path length ¼ 1/cosu 2 1. The

results are presented for wavelengths linearly sampled in steps

of 10 nm from the 400–700 nm wavelength span.

The value used in simulations for the refractive index of

spider cuticle ranges from 1.5 to 1.63, commonly inferred by

identifying a liquid of known refractive index which matches

that of the cuticle [9,49,50], thus eliminating structural colours

upon immersion. More precise measures of refractive index, for

example, Jamin-Lebedoff interference microscopy, find compar-

able values for butterfly chitin [51], a material related to spider

cuticle [48]. We assume that the imaginary component of the

refractive index is equivalent to 0, following what was assumed

for unpigmented chitin in butterfly wings in [51]. This may con-

tribute to a small overestimation of reflectance, which is

preferable to an underestimation because we are here studying

the degree to which spider cuticle can be low reflectance. Here,

following [10], we use the value of n ¼ 1.55 (except where we

study the effects of varying n in simulation), which is validated

by a close match between calculation and measurement

(electronic supplementary material, equation S1, see Results).
In peacock spiders, black colour is produced by melanin

packaged in spherical pigment granules called melanosomes

[15]. In the species studied herein, we identified melanosomes

in a dense, disorganized, clumped layer beneath the cuticle (elec-

tronic supplementary material, figure S3, ‘Mel’ in figure 4), of the

same size and location as melanosomes identified in Hsiung’s

work on related species [9,15]. For this analysis, we focus on

the microstructures but do not specifically model the melanin

absorption (see the electronic supplementary material, Methods).
3. Results
Using hyperspectral imaging, we find that the velvety black

areas reflect only 0.44% of incident light in M. speciosus,

and 0.35% in M. karrie (figures 1a,b and 3; electronic sup-

plementary material, figure S1 and table S1, collection angle

is 308), which is similar to values for human-made anti-

reflective surfaces [39–41]. These super black patches in

M. speciosus and M. karrie are darker than the normal black

cuticle in a closely related, all-black jumping spider (Saltici-

dae) Cylistella sp. (4.61% reflectance, figure 3a) and brown/

black cuticle in Maratus (electronic supplementary material,

table S1). Super black reflectance in the peacock spiders is

comparable to directional reflectance of super black plumage

in birds of paradise (figure 3a); the bird of paradise measured

herein—Drepanornis bruijnii, the pale-billed sicklebill—had

super black feathers with 0.17% reflectance adjacent to
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bright red and blue, while other birds of paradise from [31]

range from 0.05 to 0.31%.

Using SEM imaging, we identify two types of microstruc-

ture present in super black regions of these peacock spiders:

cuticular microlens arrays in both and black brush-like scales

with many tapering protrusions in M. karrie (figure 4). Typi-

cal salticid cuticle is smooth and relatively flat and

unstructured [48,52] (figure 4a,b; electronic supplementary

material, figure S4), but the cuticle in super black regions of

Maratus is patterned by microlens arrays with tall, tightly

packed, regularly spaced bumps, resembling loose rows of

protruding discs or cones (‘MLA’ in figure 4c– f ). The

bumps are approximately 6 mm tall in both species, but

they are more disc-like in M. speciosus and more conical in

M. karrie (electronic supplementary material, tables S2 and

S3). The microlens arrays in super black regions differ from:

(i) the irregular and low-relief cuticle in dark brown Maratus
females, (ii) the flat cuticle in non-display regions of males

(figure 4a,b), and (iii) the smooth unstructured cuticle in the

all-black, closely related Salticid spider Cylistella (electronic

supplementary material, figure S4). In some male Maratus,

beneath colourful scales, there is relatively flat cuticle pat-

terned with small bumps (electronic supplementary

material, figure S5), which ranges in colour from normal

black to weak, dark blue [10]. Super black cuticle bumps

are significantly taller than this regular bumpy cuticle by

3–4 mm (electronic supplementary material, tables S2 and

S3). In human-made materials, taller microlenses are more

anti-reflective [53]; therefore, these simple, relatively flat

blue or black cuticular bumps may become super black

when the bumps increase in height.

Both the microlens arrays and the brush-like scales

decrease specular reflectance and enhance melanin-based

absorption. The brush-like scales achieve a reflectance of

only 0.77% alone (measurement of isolated super black

brush-like scale on pale black background; electronic sup-

plementary material, table S1 and figure S5B). We

hypothesize that the brush-like scales multiply scatter light

between the spiny projections (figure 4g, no. 1); at each scatter-

ing event, a portion of the light is transmitted into the scale

where it is absorbed by melanin pigments, while the remaining

portion of the light is reflected at the air–cuticle interface.

Rather than being reflected away from the surface of the

spider, most of these reflected waves will subsequently encoun-

ter another spiny scale projection, where the process is repeated.

Thus, multiple scattering causes iterative, near-complete

absorption. Super black surface features with many spiny pro-

jections have been modelled previously [31], and for two

jumping spider genera (Phidippus and Platycryptus, Salticidae),

Hill [54] observed that the shape of dark-pigmented scales

‘minimizes surface glare, thus placing a premium on the inter-

action of incident light with pigment within the scale’ [54,

p. 200]. Therefore, we focused our simulations on the microlenses.

Simulations of light propagation by the surface structures

alone accurately model the experimental reflectance for (i) the

two peacock spiders (circles labelled S and K on the plots;

figure 2h) and for (ii) the normal black, unstructured cuticle

of Cylistella sp. (figure 3; we predicted approx. 4.6% reflec-

tance, consistent with electronic supplementary material,

equation S1).

Our numerical simulations confirm that the microlens

array surface features decrease specular reflectance

(figure 2; electronic supplementary material, figures S6–S8).
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surface (dotted red line); and 4, diffraction of light owing to periodic microlens array, such that less light enters the visual cone of the female spider. Scale bars:
(a) 30 mm, (b) 10 mm, (c) 30 mm, (d ) 10 mm, (e) 50 mm and ( f ) 10 mm. The location of SEM images on specimen is indicated in the electronic supplementary
material, figure S1.
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We describe three optical mechanisms. First, we show that

less light is reflected away from the spider’s body at the

air–cuticle interface; instead, we propose that light is multi-

ply scattered between adjacent lenses, causing iterative

absorption (figure 4g, no. 2) and a decrease in total surface

reflectance. For a flat cuticle surface, reflected light waves

scatter back from the surface of the spider causing a brighter

appearance. For the cuticular microlens array, reflected light

waves frequently encounter another microlens, where some

portion of the light is transmitted and absorbed. Through

repeated scattering at the air–cuticle interface, less light over-

all is reflected away from the spider and more light is

absorbed as it propagates through the cuticle and absorbing

layer (figure 4g, dotted white lines). In this manner, the

super black regions have less specular reflectance, and less

total reflectance, than a comparable flat surface.

Second, our simulations document that the microlens

arrays augment light absorption by increasing the path

length of light interacting with pigment (figures 2g,h and

3g, no. 3). The microlens arrays of both M. karrie and M. spe-
ciosus increase the transmitted light path length by 20%

compared to an unstructured cuticular surface (figure 2).

Such an increase in path length enhances the interaction

between the incident light and homogeneous absorbing

layer beneath the lens. This would allow the spiders to

employ a thinner absorbing layer compared to the thickness

required to achieve the same absorption with an unstructured
surface. While the melanin granules contribute to scattering

as well as absorption, our calculations based on [55] suggest

that the relative importance of scattering is low and thus,

the path length increase is indeed important for the

mechanism of super black (see the electronic supplementary

material, Methods).

Third, the microlens arrays reduce specular reflectance by

diffracting light out of the viewing cone of a female’s eyes

(figures 2e and 3g, no. 4). While the feature size (lens diam-

eter approx. 5–10 mm) is large compared to the wavelength

of light, it is still small enough to redirect light into diffraction

orders off of normal reflection, thus reducing the portion of

light that can enter the acceptance angle of an onlooker’s

eyes or objective lens (figure 2e). This is consistent with obser-

vations in measurements of human-made anti-reflective

coatings with 2 mm periodicity [53].

Finally, through simulations, we studied how variations

in parameters—size, shape, arrangement, refractive index,

etc.—could affect the super black phenomenon. Importantly,

by sweeping the dimensions of the microlens in simulation,

we find that the size and shape of the microlens arrays in

the peacock spiders are a balanced optimum between two

anti-reflective optical effects: (i) decreased surface reflectance

(through diffraction and multiple scattering) and

(ii) increased pigmentary absorption (path length increase

through the pigmentary layer). Larger microlenses are less

efficient at decreasing surface reflectance but more efficient
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at increasing transmitted light path length (figure 2g,h). A

radius of approximately 2 mm and height of two to three

times that radius (approx. 4–6 mm, plotted in figure 2h as a

function of radius), as observed in these spiders, sits at an

optimum trade-off between these two physical effects

(figure 2g,h). Radius and height are most important; variation

in refractive index from 1.5 to 1.65 (electronic supplementary

material, figure S6), shape N from ellipsoid to pyramidal

(electronic supplementary material, figure S7) and packing

system (the arrangement of microlenses from a top-down

view) whether hexagonal versus rectangular (electronic sup-

plementary material, figure S8) had comparably small effects.

To compare the effect of nanostructures versus micro-

structures, we simulated microlenses with radii ranging

from 0.01 to 10 mm. Nanostructures are more effective, i.e.

produce lower reflectance, over a wide-angle range (908),
but they do not necessarily perform better when a smaller

collection angle is employed, as evident in figure 2g,h.
286:20190589
4. Discussion
Peacock spiders have structurally enhanced, anti-reflective,

super black coloration. Brilliantly coloured peacock spiders

M. speciosus and M. karrie produce super black colour

owing to microlens arrays on the cuticle (and in M. karrie,

an overlaying forest of black brush-like scales) above a

dense absorbing layer of pigment.

The microlenses of super black cuticle in peacock spiders

bear a striking resemblance to anti-reflective surface orna-

mentation that enhances absorption and reduces specular

reflectance in other organisms—including flower petals

[56–59], tropical shade plant leaves [60], light-sensitive brit-

tlestar arms [61] and ommatidea in moth eyes [62]. For

example, in flowers, conical cells focus incident light and

scatter reflected or re-emitted light [63] to produce a velvety

coloured appearance and enhance light absorption by the

pigment. Applying flower-inspired structures to solar cells

(flower power) significantly increased efficiency [64,65].

Flowers and plants evolved simple structures to efficiently

harvest light (i) omnidirectionally and (ii) across the visible

spectrum (broadband anti-reflection), so they are useful inspi-

ration for broadband and omnidirectional light harvesting

[65]. In flowers, as the ratio between microlens height and

diameter increases from 0.1 to 0.4, reflection losses drop pre-

cipitously [65]. We observe the same pattern in spider

microlenses, for which ensembles of taller microlenses are

more anti-reflective (figure 2h).

Our models show that microlens arrays in spiders behave

similarly to engineered microlenses, which are widespread

for anti-reflective applications [53,66,67]. The active layer in

solar cells is analogous to the dense absorbing layer of mela-

nin beneath the cuticle in Maratus spiders (figure 4; electronic

supplementary material, figure S3, [15]). Engineers added a

microlens array to the light-facing side of a solar cell in

order to increase the light absorption efficiency compared

to the flat surface by up to 10%: the microlens array reduces

optical losses through diffraction and light focusing to

increase the path length of light in the active layer [53]. The

microlenses in peacock spiders are differently shaped than

these engineered microlenses, so it would be informative to

simulate optical losses for a solar cell with a spider-inspired

ellipsoidal microlens array.
Archetypal anti-reflective surfaces typically have nanos-

tructured features (e.g. moth eyes [34], the glasswing

butterfly [36] and black silicon for solar cells [39]), but

super black features in peacock spiders and birds of paradise

primarily have microstructures. Through our simulations, we

investigated the relative performance of microlens arrays ran-

ging in radius from 0.01 to 10 mm. Nanostructures clearly

provide a lower reflectance over a wide collection angle

(908), but they lose their advantage at smaller collection

angles (figure 2g,h). During their mating displays, spiders

and birds have control over the angle at which they are

seen by their potential mate by repositioning their body

[11,13,29,31,68]. Thus, males can restrict the collection angle

relevant to female eyes; they must be super black only over

the viewing cone of a female (estimated herein at 128; see

Methods). On the other hand, in the case of a moth eye, the

key evolutionary driving pressure is collecting as much

light as possible from all directions to see in low light con-

ditions (as well as to reduce glare in all directions to hide

from predators); this gave rise to nanostructures which

provide low angle anti-reflection in all directions.

In most organisms, melanin pigments produce normal

black colour with white, specular highlights (e.g. glossy

hair). By contrast, structural super black in peacock spi-

ders—as well as birds [31], butterflies [69], snakes [37] and

human-made materials [32]—creates a featureless black sur-

face with no highlights. Generally, super black seems

always adjacent to bright colour in peacock spiders (herein,

adjacent to red and blue: figures 1 and 3b–d ) and birds of

paradise [31]. The convergent evolution of structurally

absorbing black coloration for colourful sexual display by

both birds of paradise and now peacock spiders suggests

that broadband, featureless black surfaces play an important

sensory role in colourful displays for distantly related, but

ecologically similar, species.

We hypothesize that super black evolved in peacock spi-

ders and birds of paradise convergently through a shared

sensory bias intrinsic to colour perception. According to sen-

sory bias theory, an adaptive feature of the sensory or

cognitive system may give rise to a novel or inherently stimu-

lating perceptual experience in the context of social or sexual

signalling [70]. Here, we suggest that colour vision in spiders,

as in vertebrates, has the adaptive feature for colour correction

which gives rise to an intrinsic sensory bias stimulated by

super black near brilliant colour. Vertebrates use specular

highlights, or gleams from object surfaces, to estimate the

magnitude and spectrum of the ambient light illuminating

the visual scene, and ‘white balance’ their colour perceptions

based on this information [46]. Super black essentially elimin-

ates specular reference points. In vertebrates (specifically

humans and goldfish), anti-reflective black surfaces impede

the observer’s ability to adjust for the amount of ambient

light [44,45,71], causing colourful patches to appear self-lumi-

nous or popping above the plane of the image. This perceptual

illusion is similar to the well-studied Adelson’s checker-

shadow [72], in which the context around a grey square greatly

influences our perception of its brightness. Furthermore, anti-

reflective surface features have been shown to enhance the

brilliance and saturation of pigmentary colours in snapdra-

gons (Antirrhinum majus [57]) and plastic polymers [73].

Super black surrounding or adjacent to bright colour would

have the same chromatic effect. Therefore, we hypothesize

that the adaptive trait of colour correction also produces an
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intrinsic sensory/cognitive bias; males in extreme competition

for mating may be able to produce impossibly bright colours

by stimulating this intrinsic bias through super black.

In both birds and spiders, sexual selection has apparently

led to the evolution of a convergent optical, often angle-

dependent, illusion—the use of super black structurally

assisted absorption to enhance the perceived brilliance of

adjacent colours. Super black reveals a fundamental, and

broadly distributed, sensory bias.
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