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Structural absorption by barbule microstructures of
super black bird of paradise feathers
Dakota E. McCoy 1, Teresa Feo2, Todd Alan Harvey3 & Richard O. Prum3

Many studies have shown how pigments and internal nanostructures generate color in

nature. External surface structures can also influence appearance, such as by causing multiple

scattering of light (structural absorption) to produce a velvety, super black appearance. Here

we show that feathers from five species of birds of paradise (Aves: Paradisaeidae) structu-

rally absorb incident light to produce extremely low-reflectance, super black plumages.

Directional reflectance of these feathers (0.05–0.31%) approaches that of man-made ultra-

absorbent materials. SEM, nano-CT, and ray-tracing simulations show that super black

feathers have titled arrays of highly modified barbules, which cause more multiple scattering,

resulting in more structural absorption, than normal black feathers. Super black feathers have

an extreme directional reflectance bias and appear darkest when viewed from the distal

direction. We hypothesize that structurally absorbing, super black plumage evolved through

sensory bias to enhance the perceived brilliance of adjacent color patches during courtship

display.
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B ird coloration is a model system for understanding evolu-
tion, speciation, and sexual selection1. Color-producing
mechanisms are generally assigned to two categories1: (i)

pigmentary colors produced by molecules and (ii) structural
colors produced by light scattering from nanoscale variation in
refractive index (e.g., channels of air within a keratin matrix). In
addition to color, the directional distribution of scattered light
can also affect plumage appearance. The shape, orientation, and
smoothness of the feather barbs and barbules create directionally
dependent appearance, such as with glossy or iridescent plu-
mage2, 3.

However, the mechanism of “structural absorption4–8,” which
occurs when superficial features cause multiple scattering of
light5, 9, can also influence visual appearance. Each time light
scatters at a surface interface, a proportion of that light is
transmitted into the material, where it can be absorbed9. By
increasing the number of times light scatters, structurally
absorbing materials can increase total light absorption to produce
a profoundly black appearance. For example, a shiny metal with a
smooth surface that reflects 30–70% of visible light can be con-
verted to a matte black material that reflects less than 5% of light
by adding microstructural surface complexity that increases
structural absorption5. Natural examples of structural absorption
have been described in the wing scales of butterflies10–12 and the
body scales of a snake13. Structurally absorbing, “super black”14, 15

materials (which have extremely low, broadband reflectance) have
important applications for a wide range of optical, thermal,
mechanical, and solar technologies, including thin solar cells4 and
the lining of space telescopes8.

Decades of previous research have focused on the physics,
chemistry, social function, and evolutionary history of bird plu-
mage coloration1, 16. The polygynous birds of paradise (Aves:
Paradisaeidae) have evolved some of the most elaborate mating
displays and plumage ornaments in all animals17 (Fig. 1). In
multiple species from multiple genera in the family, males have
deep, black, and velvety plumage patches immediately adjacent to
brightly colored, highly saturated, and structurally colored plu-
mage patches (Fig. 1c–g). These black plumage patches have a
strikingly matte appearance (i.e., lacking specular highlights) and
appear profoundly darker than normal black plumage of closely
related species18 (Fig. 1a, b).

Here we use spectrophotometry, scanning electron microscopy
(SEM), high-resolution synchrotron tomography (nano-CT), and
optical ray-tracing simulations to investigate the role of structural
absorption in black feathers from seven species of birds of
paradise. Unlike normal black feathers with typical barbules, we
find that super black feathers have highly modified barbules
arranged in vertically tilted arrays, which increase multiple scat-
tering of light and thus structural absorption. Super black feathers
reduce specular reflection by one to two orders of magnitude
compared to that of normal black feathers and have extreme
directional bias corresponding to the viewing direction of a
female observing a displaying male. Therefore, we hypothesize
that these feathers evolved to enhance the perceived brilliance of
adjacent color patches by generating an optical/sensory illusion
during mating displays.

Results
Reflectance spectra. We visually selected five species of poly-
gynous birds of paradise with profoundly black plumage from five
different genera—Ptiloris paradiseus, Seleucidis melanoleucus,
Astrapia stephaniae, Lophorina superba, and Parotia wahnesi—
and two species with normal black plumage—Lycocorax pyr-
rhopterus and Melampitta lugubris (a Papuan corvoid related
to birds of paradise)—to serve as comparative controls

(Supplementary Table 1). For Lophorina, we examined both the
profoundly black plumage of the display cape and the normal
black plumage of the back, which is not used in display.

We measured the spectral reflectance of each plumage patch
using two methods: (1) total integrated (specular and diffuse)
reflectance was measured using an integrating sphere with a
diffuse light source, and (2) normal directional reflectance was
measured with a directional light source and a detector oriented
normal to the feather vane (see “Methods” for details). Both the
total integrated and normal directional reflectance measurements
confirmed that the profoundly black plumage patches were
darker than normal black plumage (Fig. 2, Supplementary Figs. 1
and 2, and Supplementary Table 1). The directional reflectance of
the profoundly black plumage patches was extremely low
(0.05–0.31%), and was one to two orders of magnitude less than
the normal black plumages (3.2–4.7%) (Fig. 2b, Supplementary
Fig. 2, and Supplementary Table 1). The extremely low directional
reflectance of these five plumages is comparable to that of other
natural and man-made super black materials4–8, 10–15.

Reflectance spectra differed between normal and super black
plumage: spectra of normal black plumages sloped upward above
~600 nm (Fig. 2 and Supplementary Figs. 1a–c and 2a–c), which
is typical of melanin pigments19. In contrast, reflectance spectra
of all five super black plumages were nearly flat (Fig. 2 and
Supplementary Figs. 1d–h and 2d–h), which is reminiscent of
super black carbon nanotube materials with exceptionally low
reflectance over the entire visible range14. Super black plumage
reflectance curves were also flatter than many man-made velvet
fabrics (Supplementary Fig. 3), profoundly black snake scales13,
and butterfly scales12. Super black plumages of birds of paradise
appear to have a more efficient, broadband absorption than other
biological examples of structural absorption.

Feather microstructure. SEM and nano-CT revealed striking
differences in microscopic barbule morphology between normal
black and super black feathers (Fig. 3a, b and Supplementary
Figs. 4–6). Barbules of normal black feathers had a typical, open
pennaceous morphology with smooth margins and a horizontal
orientation restricted to the plane of the barb rami (Fig. 3a and
Supplementary Figs. 4a, b, 5a, b, and 6a, b). In contrast, barbules
of all super black feathers had a highly modified morphology,
with microscale spikes along the margins, reminiscent of dried
oak leaves. Super black barbules curved up from the plane of the
barb rami to form a densely packed array tilted ~30° toward the
distal tip of the feather (Fig. 3b and Supplementary Figs. 4c–g,
5c–f, and 6c–f). The resulting morphology––an array of deep,
curved cavities between the smallest branches of the feather vane
—is distinct from the microstructure of super black snake and
butterfly scales13 and from man-made super black materials4–8.

Often, color-producing feather pigments or nanostructures are
restricted to the exposed tips of overlapping feathers in the
plumage1. We found a similar pattern with super black barbule
modifications. Barbules toward the tip of super black feathers
were highly modified, whereas barbules toward the base of the
same feathers had a typical normal morphology (Supplementary
Fig. 7). Also, black feathers from the back of Lophorina superba,
which are not used during display, had a typical normal
morphology and were more reflective than super black feathers
from the display cape with modified barbules (Supplementary
Figs. 1c, h and 2c, h and Supplementary Table 1). These
observations support the conclusion that the modified barbule
morphology of super black feathers serves an optical, signaling
function.

Structural absorption can occur when superficial cavities that
are much greater in width than the wavelength of visible light
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cause multiple scattering of light5. Even shiny metal surfaces can
appear black if they have the appropriate surface microstruc-
ture11–13. The tilted barbule arrays in super black bird of paradise
feathers had intra-barbule cavities that were ~200–400-µm deep
and ~5–30-µm wide, with smaller cavities along the barbule
margins at a< 5-µm scale (Fig. 3b and Supplementary Figs. 4–6).
Remarkably, the super black feathers retained their velvety black
appearance even after sputter coating with gold for SEM, whereas
the normal black feathers appeared gold (Fig. 3c, d). This direct,
experimental evidence shows that super black feathers structu-
rally absorb light to create their profoundly dark appearance.

Light-scattering simulations. To directly quantify the effects of
barbule surface microstructure on light absorption in feathers, we
used virtual ray-tracing simulations to model the interaction of
light with 3D nanoscale tomographic models of normal black and
super black feathers (Supplementary Fig. 8). Ray-tracing simu-
lations calculate the path and radiant power of light rays as they
interact with a 3D model. Each time a simulated light ray inter-
sects the feather surface (a scattering event), a portion of its
radiant power is reflected from the surface, and the remaining

portion is transmitted into the material where it can be absorbed.
Our simulations assumed no surface roughness and 100%
absorption of transmitted light. These assumptions restricted
light scattering to the specular direction and allowed us to control
for any variation in pigmentation, internal structure, or surface
roughness that might be present in the real feathers. Thus, the
ray-tracing experiments isolated the effects of external feather
microstructure on light scattering to characterize structural
absorption among feathers with different barbule morphologies.

First, we conducted ray-tracing simulations that modeled the
normal directional reflectance spectrophotometry measurements.
Our simulations confirmed that feather barbule microstructure
causes multiple scattering of light (Fig. 4a and Supplementary
Table 1). The percentage of light rays that scattered at least twice
varied among feathers from 33 to 95%, documenting the
contribution of barbule morphology to light-scattering behavior
(Fig. 4b and Supplementary Table 1). Super black feathers with
modified barbule arrays caused more multiple scattering, and had
greater simulated structural absorption, than normal black
feathers (Fig. 4b and Supplementary Table 1). Furthermore, we
found a significant negative relationship between measured
normal, directional reflectance and the percentage of simulated
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Fig. 1 Six species of birds of paradise and one close relative. a, b Species with normal black plumage patches. c–g Species with super black plumage
patches. a Paradise-crow Lycocorax pyrrhopterus. b Lesser Melampitta Melampitta lugubris, a Papuan corvoid closely related to birds of paradise. c Princess
Stephanie’s Astrapia Astrapia stephaniae. d Twelve-wired Birds-of-Paradise Seleucidis melanoleucus. e Paradise Riflebird Ptiloris paradiseus during courtship
display. f Wahnes’ Parotia Parotia wahnesi. g Superb Bird-of-Paradise Lophorina superba during courtship display with female (brown plumage). Photo
credits: a @Hanom Bashari/Burung Indonesia; b Daniel López-Velasco; c Trans Niugini Tours; d–f Tim Laman; g Ed Scholes
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light rays that scattered at least twice (Fig. 4c; linear regression:
R2 = 0.68, slope = –0.063, SE = 0.021, and P< 0.05). These results
demonstrate that the modified barbule arrays of super black
feathers increase multiple scattering of light, and contribute to a
darker appearance (i.e., lower reflectance) through increased
structural absorption, relative to the typical barbule morphology
of normal black feathers.

Next, we configured ray-tracing simulations with several
different idealized lighting conditions to investigate how
appearance varies with viewing direction and illumination. Total
integrated reflectance measurements of super black feathers were
only 50% lower than for normal black feathers (Fig. 2), indicating
specular reflectance from other angles. Furthermore, the curved,
laminar barbules of the super black feathers angle toward the
distal tip of the feather, rather than projecting up perpendicular
to the plane of the feather vane. This titled barbule orientation
could produce directional variation in structural absorption, and
thus reflectance3. To investigate, we calculated the simulated
directional reflectance for four different lighting setups: (i) omni-
directional light, (ii) directional light tilted + 45° toward the
proximal end of the feather, (iii) directional light at 0° normal to
the feather (as above), and (iv) directional light tilted at –45°
toward the distal end of the feather (see Methods for details). The
omni-directional illumination (setup i) is comparable to light in
an open environment on a cloudy day, whereas the directional
illuminations (setups ii–iv) are comparable to light in a closed
environment, such as the forest floor, with breaks in the canopy
that constrain incident light to a narrow angular range20.

Normal black and super black feathers differed markedly in
their directional reflectance. Normal black feathers reflected light
in a manner consistent with classical glossy surface reflection
theory21: the majority of energy was reflected in directions
roughly equal and opposite to that of the directional incident light
(Fig. 5a and Supplementary Fig. 9a, b). Thus, the darkest viewing
quadrant varied with the angle of illumination for normal black
feathers (Supplementary Table 2). In contrast, super black
feathers always reflected the majority of energy toward the
proximal viewing quadrant, regardless of the angle of illumina-
tion (Fig. 5b and Supplementary Fig. 9c–f). Super black feathers
were the darkest when viewed from the distal viewing angle
(Supplementary Table 2), which corresponds to looking into the
openings of the deep cavities between barbule tips (Fig. 5b and
Supplementary Fig. 9).

Discussion
Our findings demonstrate that super black bird of paradise
feathers structurally absorbs up to 99.95% of directly incident
light, and that variation in external surface microstructure can
contribute to observed differences in visual appearance of bird
plumage. The vertically tilted barbule arrays of super black bird of
paradise feathers create deep, curved cavities. This morphology is
distinct from the longitudinal ridges of butterfly scales11 and the
vertical cones of snake scales13, substantially expanding the
diversity of structurally absorbing biological materials in nature.

The extreme directional reflectance bias in super black feathers
is congruent with field observations of bird of paradise courtship
behavior22. Males of many species perform displays that maintain
a specific directional orientation between their ornaments and the
viewing females17 (Fig. 1g). We hypothesize that the tilted barbule
arrays function in coordination with the behavioral repertoire to
ensure that females view super black plumage patches at their
darkest orientation.

Interestingly, in both butterflies and birds of paradise, super
black patches are always adjacent to bright, highly saturated, and
structural colors. For example, Lophorina has a super black plu-
mage display cape surrounding its intensely brilliant blue patches,
but normal black plumage on the back that is not featured during
display (Fig. 1g and Supplementary Figs. 1c, h and 2c, h). We
hypothesize that structurally absorbing super black patches evolve
because they exaggerate the perceived brilliance of adjacent color
patches through a sensory/cognitive bias inherent in the verte-
brate mechanism of color correction. Vertebrates use specular
highlights, or white reflectance from object surfaces, within the
visual field to correct for the spectrum and quantity of ambient
light23. We propose that structurally absorbing super black pat-
ches (i) eliminate specular reflectances around the brilliant color
patch, (ii) lower the observers perceived estimate of the quantity
of ambient light upon that portion of the visual scene, and thus
(iii) disrupt the perceiver’s capacity to estimate the brilliance of
the color patch. If the brain perceives that more light is coming
from a patch than it estimates is ambient upon it, the patch will
appear to be self-luminous or to float in space24–27. Perceptual
experiments demonstrate this bias in the color correction
mechanisms of goldfish (which are tetrachromats like birds) and
humans28.

Displays of some bird of paradise, like male Lophorina, pro-
duce exactly this self-luminous effect on human observers and in
videos and photographs (Fig. 1g), and we predict that these
plumages produce similar perceptual effects on avian observers.
Theoretically, white balancing (i.e., von Kries correction) involves
dividing the signal stimulus from each cone type by that cone
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Fig. 2 Reflectance spectra of black and super black plumages. a Total integrated (diffuse and specular) reflectance. b Normal, directional reflectance.
Dotted lines are super black plumages. See Supplementary Figs. 1 and 2 for detailed spectra for each species
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type’s response to the spectrum of an adjacent “white”
point––usually a specular highlight29. Reducing the value of the
denominator in this correction to zero would effectively eliminate
the individual’s capacity for color correction.

Further research is required to understand the role of multiple
scattering among barbs and barbules of multiple feathers in
structural absorption by the entire plumage, and on the color
correction mechanisms of birds. However, it is clear that struc-
tural absorption should be considered along with pigments,
structural coloration, and specular reflection, as an important
component in determining the visual appearance of organisms.
Biological examples of structural absorption have in at least one
case inspired the fabrication of new biomimetic materials15, and
the feather structures described herein may have similar direct
applications.

Methods
Specimens. Five bird species with profoundly black plumage and two species with
normal black plumage were identified by visual observation of museum study skins
from the Yale Peabody Museum (YPM), Harvard Museum of Comparative
Zoology (MCZ), American Museum of Natural History (AMNH), and the Uni-
versity of Kansas Biodiversity Institute (KU). Details of the specimens and plumage
patches studied are summarized in Supplementary Table 1. To the human obser-
ver, super black plumage had a strongly matte appearance with so little specular
reflectance that it was difficult to focus on the surface of the plumage and dis-
tinguish individual feathers. The species with normal black plumage lacked any
conspicuous glossy specular highlights. Individual contour feathers were sampled

from museum skins for scanning electron microscopy (SEM) and synchrotron-
radiation X-ray microtomograhy (nano-CT). We could not obtain SEM of
Lophorina superba back feathers or CT scans for Lophorina superba back and
display cape feathers due to availability of material. Visual inspection of the
Lophorina back plumage using a light microscope confirmed that the barbules have
normal morphology, without the modified barbule arrays present in super black
feathers.

Spectrophotometry. Light reflectance and absorbance by the plumage can be
influenced by the specific orientation of the feathers in the plumage and also by the
interaction of light scattered by multiple feathers. The optical properties of the
intact plumage cannot be reconstructed reliably by plucking feathers and then
laying them (singly or together) on a different surface. Therefore, reflectance
spectra of super black and normal black plumage patches were recorded directly
from the plumage of prepared museum skins.

Total integrated (diffuse and specular) reflectance spectra were measured with
an Ocean Optics USB2000 spectrophotometer and ISP-REF integrating sphere
using a Spectralon white standard (Ocean Optics, Dunedin, FL). The light source
provided diffuse light from all directions and the gloss trap was closed to collect
both specular and diffuse reflectance. To ensure repeatable measures of reflectance
from these profoundly black samples, we averaged 10 scans for each output file,
and used an integration time of 40 μs. For each patch, we measured three spectra
from three different positions within the patch and averaged them to produce a
single spectrum for the patch. Two specimens per species were measured for all
species except for Astrapia stephaniae and Parotia wahnesi, for which only one
specimen was measured due to availability of material.

Directional reflectance spectra were measured with an Ocean Optics
USB2000 spectrophotometer and Ocean Optics DH-2000Bal deuterium–halogen
light source (Ocean Optics, Dunedin, FL, USA). The geometry of the directional
reflectance measurements placed the detector at 0° normal to the plumage, which

a b

c d

Fig. 3 Examples of normal and super black feather microstructure. a SEM micrograph of Lycocorax pyrrhopterus normal black feather with typical barbule
morphology; scale bar, 200 µm. b SEM micrograph of Parotia wahnesi super black feather with modified barbule arrays; scale bar, 50 µm. c Gold sputter-
coated normal black breast feather ofMelampitta lugubris appears gold. d Gold sputter-coated super black breast feather of Ptiloris paradiseus retains a black
appearance indicating structural absorption. SEM stubs are 12.8 mm in diameter. See Fig. 1 for inset photo credits
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would be the specular direction for typically flat materials. A bifurcated
illumination/detection optical fiber was held in an anodized aluminum block ~6
mm above and perpendicular to the plumage. A ~3-mm-diameter circle of light
illuminated the plumage. Reflectance between 300 and 700 nm was recorded to
obtain the species spectra for the patch. Measures of super black plumage
reflectance were quite low and noisy, and signal processing was required. Negative
values were converted to 0, and five spectra from each individual were averaged to
produce an average spectrum for the patch. Loess smoothing was applied to
produce a reflectance spectrum curve (Supplementary Fig. 2).

The light source in our integrating sphere lacked near-ultraviolet light
(300–400 nm), but the directional reflectance measures confirmed that none of
these patches produced UV reflectance features. Reflectance, %R, was calculated as
the area under the measured reflectance spectrum between 400 and 700 nm using
Riemann sums and was normalized by the number of wavelength bins measured
and 100% reflectance of the white standard.

SEM. For SEM, feathers were mounted on stubs using carbon-adhesive tabs, coated
with ~15 nm of gold, and viewed and micrographed using an ISI SS40 SEM
operating at 10 kV. For Parotia wahnesi, Ptiloris paradiseus (Fig. 3d), and Mel-
ampitta lugubris (Fig. 3c) feathers were coated with 5 nm of gold, and then viewed
and photographed using a SEM-4 FESEM Ultra55 operating at 5 kV.

Nano-CT. For nano-CT, one black contour feather from each species was washed
and then soaked in an aqueous solution of Lugol’s solution—1% (wt/v) iodine
metal (I2) + 2% potassium iodide (KI) in water—for 2–3 weeks to improve X-ray
contrast30. Feathers were scanned at beamline 2-BM at the Advanced Photon
Source facility at U.S. Department of Energy’s Argonne National Laboratory,
Argonne, Il. Feathers were mounted to a post using modeling clay and surrounded
by a Kapton tube to reduce sample motion. Feathers were aligned in the beam to
scan a portion of the distal tip that is exposed in the plumage. Scans were made
with an exposure time of 30 ms at 24.9 keV to acquire 1500 projections as the
sample rotated 180° at 3° s−1. Data sets were reconstructed as TIFF image stacks
using the TomoPy Python package (https://tomopy.readthedocs.io) in Linux on a
Dell Precision T7610 workstation with two Intel Xeon processors yielding 16 cores,
192-GB RAM, and NVIDIA Quadro K6000 with 12-GB VRAM. The isotropic
voxel dimensions of the image stacks were 0.65 µm and the field of view of each
data set was ~1.5 mm3.

3D polygon models. The external surface of each feather was segmented in
VGStudioMAX 2.0 (Volume Graphics) and a 3D polygonal mesh comprising a
geometric model of the external surface was extracted using the QuickMesh setting
and exported as an OBJ file. To optimize the ray-tracing simulations, each poly-
gonal model was cropped to a 500-µm by 500-µm swatch of the feather vane and
then the triangle count was further reduced using the decimate feature (tolerance
set to 325 nm) in Geomagic Wrap (3D Systems). Finally, we used the Mesh Doctor
feature in Geomagic Wrap to make the surface model manifold, i.e., “water tight.”
This last step was necessary to repair any defects in the polygonal mesh through
which simulated rays could artifactually enter and become trapped inside the
feather during ray-tracing simulations.

Ray-tracing simulations. The directional reflectance, transmittance, and absor-
bance of super black and normal black plumage patches were analyzed by
numerical ray trace simulations using the software package FRED31 (Photon
Engineering LLC). Simulations employing two types of illumination were con-
ducted for each feather: (1) omni-directional and (2) directional.

The “omni-directional” setup was configured with a hemispherical light source,
a hemispherical reflectance detector, and a hemispherical transmittance detector.
Into this setup, we imported a 3D polygonal mesh of each feather. Feathers were
placed at the center of all three hemispheres and oriented with their vanes in plane
with the base of the hemispheres and perpendicular to their poles. The upper or
obverse feather surface was oriented toward the light source and reflectance
hemisphere; the lower or reverse feather surface was oriented toward the
transmittance hemisphere. One million rays of random wavelength between 300
and 700 nm were emitted from random positions on the hemispherical source and
propagated in random directions constrained by a square plane with a side length
of 330 µm centered on the feather (corresponding to 66% of the width of the
feather swatch).

The “directional” setup was configured as a scale model of the directional
reflectance spectrophotometry setup. Directional reflectance simulations were
conducted for each feather sample under three different light source orientations:
(i) tilted +45° toward the proximal end of the feather, (ii) 0° normal to the feather,
and (iii) tilted −45° toward the distal end of the feather. While the plumage was
illuminated by a 3-mm-diameter spot in the spectrophotometry experiments, the
illumination spot in the simulations was scaled from 11% to 330 µm
(corresponding to 66% of the 500-µm width of the feather swatch). The width of
the light source representing the bare optical fiber bundle and its distance above the
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Fig. 4 Ray-tracing simulations. a Simulation from FRED showing the trace of a ray that scatters multiple times between barbules of a super black feather.
b Substantial variation in frequency of multiple scattering events among species predicts variation in structural absorption. c Measured reflectance is
significantly negatively correlated with the proportion of reflected rays that scattered at least twice (linear regression: R2= 0.68, slope= −0.063,
SE= 0.021, and P< 0.05)
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feather swatch were also scaled at 11% to ensure that the size of the solid angle
illuminating the plumage patch in the simulations matched that in the
spectrophotometry measurements. One million rays of random wavelength
between 300 and 700 nm were positioned on a grid spanning the light source. A
circular aperture was used to cull rays from the square source, thereby shaping the
source to match that of the spectrophotometer probe. Ultimately, 785,398 rays
were emitted by the circular source in random directions within an angular range
of 28˚, thereby illuminating the 330-µm-diameter spot centered on the feather.

In both “omni-directional” and “directional” simulations, each ray had one of
three possible fates. (1) No interaction, where the ray passes through gaps in the
feather vane without ever striking the surface of the feather and ultimately
terminates when it intersects the transmittance hemisphere. (2) “Transmitted,”
where the ray strikes the surface of the feather one or more times until it ultimately
exits the underside or reverse surface of the feather vane and terminates on the
transmittance hemisphere. (3) “Reflected,” where the ray strikes the surface of the
feather one or more times until it ultimately exits the topside or obverse surface of
the feather vane and terminates on the reflectance hemisphere. For the scope of this
study, we only consider the subset of incident rays that are “reflected” (fate 3). Rays
that terminate on the transmittance hemisphere (fates 1 and 2), represent more
complex interactions between multiple overlapping feathers in the plumage and/or
the skin that we do not consider here.

We simplified the ray-tracing simulations of the feather surface and controlled
for potential differences in surface roughness between the real feathers by excluding
surface scattering caused by surface roughness (reflections in nonspecular
directions) from the simulation. We traced rays using the surface normals of the
bare polygon mesh of the feather, treating each polygon in the mesh as a smooth
surface. Since no BRDF model was applied to the surface, all radiant power was
directed in the specular direction. Thus, each time a ray struck the surface of the
feather (a simplified “scattering” event), it bifurcated into one and only one
component ray that reflected from the surface of the feather, and one and only one
component ray that transmitted into the feather. The direction of the reflected ray
was computed based on the law of reflection (θi = θr), and Fresnel equations yielded
the fraction of the incident radiant power reflected as a function of the incident
angle and the ratio of the index of refraction of air (1.0) and feather keratin (1.56).
To investigate the effects of surface microstructure independent of any potential
differences in melanin or internal nanostructure between the real feathers, we
assumed that rays transmitted into the feather were entirely absorbed before exiting
the feather. Thus, any difference in calculated absorption between simulated
feathers is caused by variations in the orientation of the feather surface and
differences in the number of multiple scattering events.

The ray-tracing simulation proceeded as follows: first, rays with equal amounts
of radiant power were emitted from the light source and propagated in the
direction of the feather. Then, rays repeatedly intersected the surfaces of the feather
vane and reflected from those surfaces in the specular direction until they exited
the volume of space occupied by the feather vane and terminated on a hemisphere.
For each ray, the simulation recorded the number of light ray-surface intersections,
the hemisphere of and spherical coordinates of the termination point, and the
ending radiant power. For each ray, absorbance was calculated from the difference
between the starting and ending radiant power. For comparison with the
directional reflectance spectrophotometry measurements, total absorbance under
0° normal directional illumination was calculated as the sum of reflected light rays
that terminated within an angular range of 27°. Percent multiple scattering was
calculated as the percentage of this set of rays that scattered two or more times off
of the surface of the feather.

To determine how reflectance varies based on the angle incident light and
viewing directions, we calculated the locally averaged reflectance at different
viewing directions with a nonparametric kernel regression fit using the kreg
function with default settings from the R package gplm. The kernel density
estimate and regression fits were evaluated at 400 points, representing different
viewing directions that were uniformly distributed over the reflectance hemisphere,
and the results were plotted as a log-scale color gradient on orthogonal projections
of the hemisphere using the persp3d function from the R package rgl.

We used linear regression to estimate correlation between the proportion of
rays that scattered at least twice and the actual measured reflectance for the 0°
normal directional light ray-tracing setup; we report R2, slope, standard error of the
slope, and P value.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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