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Abstract Sustainable cities depend on urban forests. City trees—pillars of urban forests—
improve our health, clean the air, store CO2, and cool local temperatures. Comparatively less is 
known about city tree communities as ecosystems, particularly regarding spatial composition, 
species diversity, tree health, and the abundance of introduced species. Here, we assembled and 
standardized a new dataset of N = 5,660,237 trees from 63 of the largest US cities with detailed 
information on location, health, species, and whether a species is introduced or naturally occurring 
(i.e., “native”). We further designed new tools to analyze spatial clustering and the abundance of 
introduced species. We show that trees significantly cluster by species in 98% of cities, potentially 
increasing pest vulnerability (even in species- diverse cities). Further, introduced species signifi-
cantly homogenize tree communities across cities, while naturally occurring trees (i.e., “native” 
trees) comprise 0.51–87.4% (median = 45.6%) of city tree populations. Introduced species are more 
common in drier cities, and climate also shapes tree species diversity across urban forests. Parks 
have greater tree species diversity than urban settings. Compared to past work which focused on 
canopy cover and species richness, we show the importance of analyzing spatial composition and 
introduced species in urban ecosystems (and we develop new tools and datasets to do so). Future 
work could analyze city trees alongside sociodemographic variables or bird, insect, and plant diver-
sity (e.g., from citizen- science initiatives). With these tools, we may evaluate existing city trees in 
new, nuanced ways and design future plantings to maximize resistance to pests and climate change. 
We depend on city trees.

Editor's evaluation
This paper will be of interest to urban foresters, ecologists, and planners. It provides a large new 
dataset of city tree communities across US cities, which may ignite new studies on city biodiversity 
and ecosystem services. It contains clear descriptions about the data processing and structures, and 
the potential uses of the data.
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Introduction
Cities are ecosystems. Humans (Willis and Petrokofsky, 2017) and other animals (Berthon et al., 
2021) depend on urban forests, which are the woody and associated vegetation in and around dense 
human settlements (Konijnendijk et al., 2006). City tree communities, an essential component of 
urban forests, improve our cities in many ways. City trees boost mental and physical health (Hartig and 
Kahn, 2016), capture and store carbon dioxide (Rowntree and Nowak, 1991), scrub toxic particulate 
matter from the air (Nowak et al., 2014), and cool local temperatures by about 0.83°C for every 10% 
increase in forest cover (Kong et al., 2014). The financial benefits of having a tree- rich city—rather 
than a concrete jungle—are huge and well documented (McPherson et al., 2016). Tree inventories 
provide a wealth of useful data (Cowett and Bassuk, 2014; Cowett and Bassuk, 2020; Galle et al., 
2021; Kendal et al., 2014; Love et al., 2022; McPherson et al., 2016; Ossola et al., 2020; Rich-
ards, 1983; Steenberg, 2018). Many studies underscore the importance of city plant life to humans, 
but comparatively fewer evaluate urban forests as potentially biodiverse ecosystems (Alvey, 2006). 
Through this ecological lens, it is important to understand species diversity (Behm, 2020), nativity 
status (Tallamy, 2004), and spatial arrangements of city trees (Roman et al., 2018). In particular, we 
wanted to know whether local climatic conditions are associated with the species diversity of city tree 
communities, how species diversity was distributed in space within cities, and whether introduced tree 
species contribute to biotic homogenization among urban ecosystems.

Here, we assembled a dataset of N = 5,660,237 individual trees from 63 US cities (Figure 1—source 
data 1; https://doi.org/10.5061/dryad.2jm63xsrf) with data on species, exact location, nativity status 
(naturally occurring vs. introduced), and standardized health (tree condition). We also developed 
tools to analyze the diversity, spatial structure, abundance of naturally occurring versus introduced 
trees, and overall condition of city tree communities. We demonstrate that these new tools provide 
a richer picture of city trees than relying on canopy cover and species count alone. For example, it 
is now possible for researchers to assess the spatial arrangement of trees by species (taking into 

eLife digest Trees in towns and cities provide critical services to humans, animals and other living 
things. They help prevent climate change by capturing and storing carbon dioxide; they provide food 
and shelter to other species, they scrub the air of microscopic pollutants, cool local temperatures, and 
improve the mental and physical health of those who have access to them.

In general, naturally occurring (so called native) plant species support richer local ecosystems – 
such as bird and butterfly communities – than plants that have been introduced from other areas. 
However, relatively little is known about which species of trees are found in towns and cities or how 
these species are distributed.

Here, McCoy, Goulet- Scott et al. assembled a dataset of 5.6 million city trees from 63 cities in the 
United States. This dataset contained rich data on the exact location, species, and health of individual 
city trees – including park trees, those in urban forests, and trees that line city streets.

In nearly all of the cities, the same tree species were found clustered next to each other, even in 
cities that had many different species of tree overall. This tendency of tree species to flock together 
may make these communities more vulnerable to disease and pest outbreaks. Trees in more devel-
oped environments, like those that line streets, were much less species diverse than trees spread 
across parks.

Cities with wetter, cooler climates tended to have higher percentages of native tree species 
compared to cities with drier, hotter climates. Younger cities also had a greater percentage of native 
tree species than older cities, which may reflect increased awareness of the importance of native 
tree species among urban planners in more recent years. The cities that had planted non- native tree 
species tended to select the same species, which contributed to tree communities in different cities 
looking more alike.

McCoy, Goulet- Scott et al. provide easy- to- use tools academics and urban foresters can use to 
assess how diverse tree communities in individual cities are. This work may help local decision- makers 
to select and plant trees that build resilience against climate change, pest and disease outbreaks, and 
maximize the health benefits trees provide all city dwellers.

https://doi.org/10.7554/eLife.77891
https://doi.org/10.5061/dryad.2jm63xsrf
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consideration the underlying spatial structure of city streets)—a metric which, we show, is not depen-
dent on tree species diversity and which may indicate vulnerability to pests such as Dutch Elm disease 
(Laćan and McBride, 2008). Likewise, we show that the abundance of introduced trees varies greatly, 
even among cities with a high diversity of tree species; abundance of naturally occurring trees (i.e., 
“native” trees) is a useful proxy for an environment’s capacity to support diverse communities of birds, 
butterflies, and other animals (Burghardt et al., 2009; Burghardt et al., 2010; Tallamy, 2004).

Taken together, we make available a large new dataset of city trees, user- friendly tools to better 
analyze the ecosystem structure of city tree communities, and proof- of- concept analyses to demon-
strate potential uses of the data. Through these technical and practical advances, we help to enable 
the design of rich, heterogenous ecosystems built around city trees.

Results and discussion
A new dataset of more than 5 million city trees
First, we assembled and standardized a large dataset of N = 5,660,237 city trees to enable the anal-
ysis of urban forests’ ecosystem structure. We acquired tree inventories from 63 of the largest 150 
US cities (those which had conducted inventories) and developed a standardization pipeline in R 
and Python (Source code 1). Each inventory was produced using different, city- specific methods: for 
example, some cities only reported a tree’s common name; some reported an address but no coor-
dinates; some reported tree size in feet, some in meters; some scored tree health from 1 to 5 while 
others rated trees as ‘good’ or ‘poor’; very few cities reported whether each tree was an introduced 
species; etc. Therefore, we inspected metadata for all cities and communicated with urban officials to 
standardize column names, standardize metrics of tree health, and convert all units to metric (Supple-
mentary file 1; Source code 1; ‘Materials and methods’). We converted all common names to scien-
tific and manually corrected misspellings in all species names (see Source code 1, and ‘Materials and 
methods’, for full details). We manually coded all tree locations as being in a green space or in an 
urban environment to enable comparisons between location types. Finally, we referenced data from 
the Biota of North America Project on nativity status to classify each tree as naturally occurring or 
introduced. The resulting dataset (Figure 1, Figure 1—source data 1) comprised 63 city datasheets 
each with 28 standardized columns (Supplementary file 1).

New tools for—and preliminary analyses of—species diversity, spatial 
structure, introduced species, tree health, and climate effects
Typically, researchers analyze city tree communities through species richness (as a measure of diver-
sity) and percent canopy cover. Our large, fine- grained dataset allows for analysis of (1) effective 
species counts (a robust measure of diversity defined as the exponent of the Shannon–Weiner index; 
Equation 1), (2) spatial structure of city tree communities, (3) abundance of introduced versus natu-
rally occurring trees, (4) climate drivers of species diversity and naturally occurring tree abundance, 
and (5) how city tree diversity correlates with fine- grained data on socioeconomics, demographics, the 
physical environment, and other forms of species diversity (e.g., birds and insects).

We found that city tree communities are moderately biodiverse, particularly in parks (Figure 2), 
but are significantly clustered by individual species (Figure 3). City tree communities varied in number 
of species represented (min = 16, median = 137, max = 528; Figure 1—source data 2) and in a 
robust, naturalistic measure of species diversity known as effective species count (min = 6 to max = 
93 with a median = 26; Figure 2A). Tree communities located in parks were significantly more diverse 
than trees located in developed environments (e.g., along streets), controlling for population size 
(Figure 2B, Figure 2—figure supplement 1). For all analyses, when comparing diversity measures 
across different size scales, we applied rarefaction and extrapolation techniques using the R package 
iNext (see ‘Materials and methods’; Chao et al., 2015; Chao et al., 2014; Chao and Jost, 2012; 
Hsieh et al., 2016) and performed sensitivity analyses excluding low- coverage cities.

Another commonly used species diversity metric is maximum abundance: relative abundance or 
frequency of the most abundant species. Many foresters follow Santamour’s 10/20/30 rule, that the 
relative abundance of the most common species in a city should be less than 10%, the most common 
genus less than 20%, and the most common family less than 30% (Santamour, 2004). Here, the rela-
tive abundance of the most common species correlated significantly with effective species number, 

https://doi.org/10.7554/eLife.77891
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Figure 1. We assembled and standardized a dataset of N = 5,660,237 street trees from publicly available street tree inventories across 63 cities in the 
USA. (A) The number of trees recorded per city varied from 214 (Phoenix, AZ) to 720,140 (Los Angeles, CA) with a median of 45,148. (B) Sample plot of 
Pittsburgh, PA with trees colored by species type (inset: zoomed- in view of trees lining streets and parks). We include statistics for total number of trees 
Ntrees = 45,703; total number of species Nspecies = 206; effective species count = 36 (a measure of diversity that incorporates both richness [number of 
species] and evenness [distribution of those species]; see Equation 1); and percent naturally occurring (rather than introduced) trees = 42.7%. (C) Counts 
of the 10 most common species inventoried in Pittsburgh; not shown are 22,647 trees belonging to other species (black points in (B)). The dataset 
includes information on species, exact location, whether a tree is introduced or naturally occurring, tree height, tree diameter, location type (green 
space or urban setting), tree health/condition, and more (Figure 1—source data 1). Source data are Figure 1—source data 1 and Figure 1—source 
data 2; source code is Source code 2.

The online version of this article includes the following source data for figure 1:

Source data 1. City_Trees_Data_63_Files.zip.

Source data 2. Tree_Data_Summary_By_City.csv.

https://doi.org/10.7554/eLife.77891
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Figure 2. City tree communities are diverse and shaped by climate, although certain genera dominate. (A) Effective species count, a measure of 
species diversity, ranged across cities from min = 6 to max = 93 with a median = 26. We use Shannon’s effective species count (Equation 1), a more 
nuanced metric than abundance- based metrics (see Figure 2—figure supplement 2). (B) Trees in parks were significantly more diverse than trees in 
urban settings such as along streets (two- sample paired t- test comparing effective species numbers; t = 7, p < 0.0005, 95% confidence interval [CI] = 
[11.8, 22.9], mean diff. = 17, degrees of freedom = 10.4). To account for differences in population size and sampling effort between areas, we calculated 
effective species number for a given population size (the smaller of the two options, park and urban, for each city) using rarefaction approaches in the R 
package iNext. Results were also significant for (1) raw effective species number and (2) asymptotic estimate of effective species number. See Figure 2—
figure supplement 1 for sample sizes. (C) Environmental factors were significantly correlated with effective species count, across six sensitivity 
conditions controlling for sampling effort, population size, and more (Supplementary file 2). Most sociocultural variables were not significant, but cities 
designated as ‘Tree City USA’ were significantly more likely to have higher effective species numbers than those without that designation (for three of 
our six sensitivity analyses). Here, we plot the negative relationship between tree species diversity (effective species count controlling for population 
size) and temperature seasonality (captured through environmental PC1; see Supplementary file 5). To allow for comparison across cities with different 
sizes and sampling efforts, we plot the calculated effective species number for a population = 37,000 trees, the rounded median population size (using 
rarefaction and extrapolation in R package iNext). Results were also significant for (1) raw effective species number, (2) asymptotic estimate of effective 
species number, and when excluding cities with low sample size or sample coverage (Supplementary file 2). (D) The most abundant genus in each 
city is labeled here; see the most common species by city in Figure 2—figure supplement 3. Supporting figures for this figure include Figure 2—
figure supplement 1, Figure 2—figure supplement 2, and Figure 2—figure supplement 3; Supplementary file 2 and Supplementary file 5 are 
supporting tables. Source data are Figure 1—source data 1, Figure 1—source data 2, and Figure 2—source data 1; source code is Source code 2; 
and an associated tool to calculate effective species is Source code 3.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Rarefaction_Plots.zip.

Figure supplement 1. Tree communities in parks were significantly more biodiverse than those in urban settings but did not differ significantly in 
percent of trees that were naturally occurring (rather than introduced).

Figure 2 continued on next page

https://doi.org/10.7554/eLife.77891
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but cities below the 10% max abundance threshold vary from 33 to 93 effective species (Figure 2—
figure supplement 2). Therefore, Santamour’s rule may be a necessary but not a sufficient guideline, 
so we developed an Excel resource to calculate effective species number from a list of (1) species 
counts or (2) all trees (Source code 3).

Because our dataset spans many different environmental conditions, we could assess the extent 
to which climate has impacted the ecosystem structure of city trees. We summarized the climate 
of each city with a principal components analysis (PCA) of 19 bioclimatic variables from the World-
Clim (Fick and Hijmans, 2017) database (Supplementary file 5). Across the USA, climate—but not 
sociocultural factors—correlated with city tree species diversity (Figure 2C, Supplementary file 2). 
Specifically, controlling for sample size and coverage, temperature and rainfall significantly correlate 
with effective species count, aligning with previous analyses of city trees, Kendal et al., 2014 and 
global distributions of plants, Woodward and Williams, 1987. Maples (Acer) and Oaks (Quercus) 
dominated city tree genera across the country (Figure 2D), while the most common species were Acer 
platanoides (Norway Maple), Fraxinus pennsylvanica (Green Ash), Lagerstroemia indica (crape myrtle), 
and Platanus acerifolia (London plane); see Figure 2—figure supplement 3.

We next investigated the spatial arrangement of species diversity in city tree communities. Species- 
diverse, rather than species- poor, city tree communities offer many well- documented benefits. 
Species- diverse forests are more effective in resisting diseases (Laćan and McBride, 2008), are more 
resilient in the face of climate change (Roloff et al., 2009) and confer greater mental health bene-
fits (Fuller et al., 2007). Compared to species diversity, the spatial arrangement of trees is less well 

Figure supplement 2. Effective species is a more nuanced metric of species diversity than the metric of the relative abundance of the most common 
species or genus.

Figure supplement 3. The most common tree species in each city is labeled.

Figure 2 continued
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Figure 3. Trees are spatially clustered by species in nearly all cities, even in cities with high species diversity. (A) In 47 of 48 cities, trees are non- randomly 
clustered by individual species (with significantly fewer effective species per spatial cluster than expected, i.e., values <100%). Plotted points represent 
median values and 95% confidence intervals (observed/expected effective species counts) for all clusters in a city (see Nclusters per city and full statistics 
in Figure 3—source data 1). We excluded one city, Greensboro, from the analysis due to insufficient sample size (10 clusters). (B) The degree of 
spatial clustering in a city was not correlated with effective species number, a measure of tree diversity (Figure 3—figure supplement 1). To control 
for different sizes and sampling efforts across cities, here we plot the calculated effective species number for a given population = 37,000 trees (using 
rarefaction and extrapolation in R package iNext). Ncities = 48. Figure 3—figure supplement 1 is a supporting figure for this figure. Source data are 
Figure 1—source data 1 and Figure 3—source data 1; source code is Source code 2.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Clustering_Results.csv.

Figure supplement 1. The degree to which a city has trees clustered by species does not correlate with abundance- based measures of species 
diversity.

https://doi.org/10.7554/eLife.77891
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understood, even though clusters of same species of trees may be more susceptible to pest outbreaks 
(Greene and Millward, 2016; Raupp et al., 2006).

We found that city trees were non- randomly clustered by individual species in 47 of 48 cities 
(Figure 3A). Additionally, a city’s clustering score was not significantly correlated with species diver-
sity metrics and is therefore a separate metric of interest (Figure 3B, Figure 3—figure supplement 
1). City tree communities with well- mixed arrangements of trees may be more resistant to species- 
specific diseases and blights, as in the case of the Emerald Ash Borer Agrilus planipennis (Greene and 
Millward, 2016). Clustering by species is not necessarily a negative, nor indeed should we neces-
sarily expect trees to be randomly arranged (see suggestions for further research in ‘Future Analyses’ 
section). Here, we take a first step toward making spatial clustering a metric of interest in city tree 
planning.

As city officials consider which trees to plant where, weighing many factors such as appearance and 
hardiness (Conway and Vander Vecht, 2015), we suggest they consider a simple metric of species 
clustering. To calculate clustering metrics, readers familiar with Python and R can use the code in 
Source code 2; others should contact the authors (a web resource is currently under development).

Our new dataset allows researchers and urban foresters to consider the utility of naturally occurring 
versus introduced trees (i.e., “native” vs. “non- native” trees). Whether or not a city decides to plant 
naturally occurring species rather than introduced species is a growing topic of interest (along with 
whether nativity status matters, and how to define “native” or “naturally occurring”, Berthon et al., 
2021; Gould, 1998; Sjöman et al., 2016). We classify plants as “naturally occurring” if they occur in a 
particular region without direct or indirect recent human intervention. This definition does not account 
for the substantial effects of Indigenous peoples on plant communities before European contact, nor 
does this paper address the flaws with a “native- or- not” ecological approach (see discussion of an 
alternative Indigenous ecology in Grenz, 2020; McKay and Grenz, 2021).

Here, we found that the percent of trees that were naturally occurring (i.e., “native”) varied across 
cities from 0.51% to 87.4% with a median of 45.6% (Figure 4). Wetter, cooler climates correlated with 
significantly higher percentages of naturally occurring trees (Figure 4A, B). However, it is important to 
note a strong east- to- west gradient, by which more introduced trees were present in western states 
(Figure 4A). Thus, some social factor may have influenced the planting of introduced trees (Roman 
et al., 2018; Steenberg, 2018). However, after accounting for climate, younger cities had a higher 
percentage of naturally occurring trees (Supplementary file 3); perhaps urban forestry practitioners 
have been more likely to consider nativity status in recent years. The observed east- to- west gradient 
deserves further research attention.

In general, naturally occurring (“native”) plant species support richer local ecosystems (e.g., more 
diverse and numerous bird and butterfly communities, Burghardt et  al., 2009; Burghardt et  al., 
2010). Among introduced plants, those with naturally occurring congeners support more and more 
diverse Lepidopteran species than those without (Burghardt et al., 2010). Many cities with relatively 
low populations of naturally occurring trees nonetheless had many introduced trees with a naturally 
occurring congener (bottom right quadrant, Supplementary file 5B)—and therefore likely provide 
moderate insect habitat. Diversity of naturally occurring trees is significantly correlated with overall 
tree community diversity (Figure 4—figure supplement 1). Nativity status is a useful proxy for ecolog-
ical value (although it is not, alone, a deciding factor, Berthon et al., 2021), so we developed an Excel 
tool to report nativity status as ‘introduced’ or ‘naturally occurring’ based on a user’s list of species 
for a given city or state (Source code 4). Original BONAP data on all native taxa for each US state are 
available in Figure 4—source data 1.

Urban foresters typically aim to select tree species which will be healthy in their city environment. 
Our dataset provides standardized metrics of tree health across many cities, allowing analyses of what 
tree- or location- specific factors correlate with health in city trees. Our preliminary analyses suggest 
that whether or not a tree was an introduced species had no clear impact on tree health (Supplemen-
tary file 4). Trees are generally healthier when they are smaller and/or in an urban setting rather than 
in parks (Supplementary file 4), possibly because city arborists quickly remove unhealthy trees in 
densely populated areas where they pose a fall risk. Further work is needed on within- species trends.

Are city tree communities more similar to each other than we would expect based on geog-
raphy and climate? Indeed, we found that introduced tree species drive similar species compositions 
between cities (Figure 4C), reflecting the phenomenon of ‘biotic homogenization’ (McKinney and 

https://doi.org/10.7554/eLife.77891
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Figure 4. Environment strongly influences the percentage of naturally occurring trees, while introduced trees make species compositions more similar 
between cities. (A) Cities in wetter, cooler climates—and younger cities—had significantly higher percentages of naturally occurring (rather than 
introduced) trees (beta regression; AIC = −58.4, pseudo- R2 = 0.64, log likelihood = 35.2; statistics in Supplementary file 3). Indeed, we found that 
wetter, cooler climates significantly predicted higher percentages of naturally occurring trees across four sensitivity tests: excluding outliers (Ncities = 61); 
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(Ncities = 56). See Supplementary file 3. Here, we plot a principal component analysis of the Bioclim variables (Figure 4—source data 2), colored by 
percent naturally occurring trees. Each point represents one city. Bioclim variables relating to precipitation (such as annual precipitation) are negatively 
correlated with PC1 and positively correlated with PC2 (see complete loadings in Supplementary file 5). (B) The percent of naturally occurring trees 
is plotted against annual precipitation in mm (black and white background). (C) Among city pairs (Ncomparisons = 1953), overall species communities are 
significantly more similar to one another than their naturally occurring species communities alone (paired t- test, t = 20.4, p < 0.0005, 95% confidence 
interval [CI] = [0.060, 0.072], mean difference = 0.066, degrees of freedom = 1,952; result upheld by non- parametric Wilcoxon signed- rank test). We 
calculated chi- square similarity scores for each pair of cities under two conditions; first, we included all trees (‘all’), then we included only naturally 
occurring trees (‘naturally occurring’), and reported the difference between the two similarity scores. We controlled for different population sizes and 
sampling efforts by randomly subsampling the larger city in the pairwise comparison 50 times and calculating the median chi- squared similarity score 
from those 50 repetitions. (D) Among city pairs, environment is significantly more strongly related to naturally occurring species than introduced species. 
We compared chi- square similarity scores between species communities (left: naturally occurring only; right: all) against environmental similarity scores 
(one minus the normalized euclidean distance in our principal components analysis [PCA]). Left panel, green, naturally occurring species only: Pearson’s 
product- moment correlation, cor = 0.77, 95% CI = [ 0.75, 0.78], t = 52.7, p < 0.0005, degrees of freedom = 1,952. Right panel, blue, all species: Pearson’s 
product- moment correlation; cor = 0.69, 95% CI = [0.67, 0.71], t = 42.0, p < 0.0005, degrees of freedom = 1,952. In the right panel, the green line is the 
same as in the left panel to enable comparisons. Figure 4—figure supplement 1 is a supporting figure for this figure, and Supplementary file 3 and 
Supplementary file 5 are supporting tables for this figure. Source data are Figure 1—source data 1, Figure 1—source data 2, Figure 4—source 

Figure 4 continued on next page
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Lockwood, 1999). Briefly, biotic homogenization occurs when species are introduced to new areas, 
reducing the distinctness between source and site of introduction. Unsurprisingly, environment is a 
significant driver of tree community similarity between cities, but this association is stronger for natu-
rally occurring (rather than introduced) trees (Figure 4D).

These data have been collected over many years by urban foresters, citizen scientists, consulting 
firms, and other interested parties; here, we could not evaluate each city’s accuracy at species iden-
tification and location determination. Likewise, we could not fully control for different sampling 
schemes and sampling efforts (but see ‘Materials and methods’). Future work could deploy tree 
experts to randomly resample trees in each city and compare the identification to that in our 
dataset.

10 20 30 40 50

effective species

50 100 150 200 250

income ($1000)

20 40 60 80 100
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Figure 5. Future analyses could combine this city trees data with social, demographic, or physical variables (including income and urban heat islands). 
Here, we plot different variables for Washington, DC, showing qualitative concordance between (A, B) measures of species diversity, (C) household 
income, and (D) the location of urban heat islands. (A) Effective species count is highest in the northwest and varies by census tract from 7 species 
to 54 species (median = 35 species). (B) Species richness is also highest in the northwest and varies by census tract from 17 species to 118 species 
(median 77 species). (C) Median household income is highest in the northwest, the region which overlaps substantially with the most biodiverse city 
tree communities. (D) Land surface temperatures in July 2018 are plotted to show the spatial location of the highest temperatures, including urban heat 
islands with temperatures >95°F. Source data are Figure 1—source data 1 and open- access data available from the US Census and the DC Open Data 
Portal (see ‘Materials and methods’) and source code is Source code 2.

data 1, Figure 4—source data 2, and Figure 4—source data 3; source code is Source code 2; and an associated tool to label each species in a list of 
treespecies as ‘naturally occurring’ or ‘introduced’ is Source code 4. Significance level *** indicates p<0.0005.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Native_Taxa_By_State_BONAP.csv.

Source data 2. Environmental_PCA.xlsx.

Source data 3. Spatial_Coverage_Analysis.zip.

Figure supplement 1. The percent of trees that are naturally occurring rather than introduced is not the only important variable when considering 
nativity status; here, we plot the species diversity of naturally occurring trees and percent of introduced trees that are closely related to naturally 
occurring trees (have a naturally occurring congener).

Figure 4 continued
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Future analyses: socioeconomics, demographics, the physical 
environment, and citizen-science species identification
Beyond the analyses demonstrated above, our dataset could also be combined with social, economic, 
and physical variables for new analyses (Figure 5). Simple maps of species diversity in the Washington, 
DC area (Figure 5A, B) show that high diversity qualitatively overlaps with high median household 
income (Figure 5C). In other words, not only do ‘trees grow on money’ (Schwarz et al., 2015), but 
they may be more diverse in richer areas (Pedlowski et al., 2002). Biodiverse green spaces improve 
mental health more than species- poor spaces (Wood et al., 2018) and likely have other synergistic 
benefits such as promoting more species diversity among birds and insects. Therefore, further anal-
yses of city tree diversity by income, and other demographic factors, would be useful.

City trees cool urban temperatures (Kong et al., 2014) and clean the air, benefits which are not 
equitably distributed. For example, Figure 5D shows the location of heat islands in Washington, DC; 
urban heat islands can be cooled by planting city trees and increasing canopy cover (Gartland, 2012). 
The dataset herein could be combined with many physical variables for new analyses of how tree 
diversity and species compositions relate to temperature, air quality, and more.

Researchers could also analyze this city trees dataset in combination with other species diversity 
datasets gathered by citizen scientists. Members of the public frequently use popular phone applica-
tions to identify and document the location of birds, plants, insects, and more (Bonnet et al., 2020; 
Chandler et al., 2017). Future work could analyze whether a diverse city tree community correlates 
with a more biodiverse community of insects, birds, and even non- tree plants. Likewise, an analysis 
could consider whether the abundance of naturally occurring trees correlates with other important 
measures of ecosystem health (such as insect abundance). Since citizen- science datasets typically 
include exact location, future work could assess these trends over fine scales (e.g., within particular 
parks or in bounded neighborhoods) as well as across cities.

It would be useful to perform more refined analyses of clustering. For example, what is the biolog-
ical significance of variation in cluster size (as determined by the hdbscan clustering algorithms)? The 
size and arrangement of the clusters themselves may be useful metrics. How clustered should we 
expect trees to be in both wild and urban settings? That is, what are our are null expectations? Further, 
researchers could apply network theory to predict how pest species would proliferate through each of 
these cities depending on the spatial arrangement of pest- sensitive trees.

Our study follows other impressive efforts to integrate and make inference from large sets of street 
tree inventories (e.g., Kendal et al., 2014; Love et al., 2022; Ossola et al., 2020). We concentrated 
our data collection on inventories with fine- scale tree locations and within a geographic context where 
plant species have been thoroughly characterized as introduced or naturally occurring, which allowed 
us to introduce two new approaches to this endeavor. First, we could evaluate how street tree diver-
sity is spatially clustered within cities. Second, we could assess the influence of introduced versus 
naturally occurring tree species on driving tree community similarity between cities. Further, we also 
standardized data on tree health and developed new tools for analyzing datasets of urban forests. We 
anticipate that many further analyses of street tree inventories are yet to come.

Conclusion
Humans consciously control urban ecosystems, in part by selecting and planting city trees. We have 
an opportunity to design diverse, spatially heterogeneous city tree communities with fewer intro-
duced species—thereby building resilience against climate change (Roloff et  al., 2009), avoiding 
pest/pathogen outbreaks (Laćan and McBride, 2008), improving human’s mental and physical health 
(Fuller et al., 2007), and providing richer habitat for non- human animals (Burghardt et al., 2009; 
Burghardt et al., 2010; Gallo and Fidino, 2018; Parsons et al., 2018). We should use green decision- 
making to forge a path toward a sustainable urban future.

Materials and methods
Data acquisition
We limited our search to the 150 largest cities in the USA by census population.

To acquire raw data on street tree communities, we used a search protocol on both Google and 
Google Datasets Search (https://datasetsearch.research.google.com/). We first searched the city 

https://doi.org/10.7554/eLife.77891
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name plus each of the following: street trees, city trees, tree inventory, urban forest, and urban 
canopy (all combinations totaled 20 searches per city, 10 each in Google and Google Datasets Search). 
We then read the first page of google results and the top 20 results from Google Datasets Search. If 
our search produced a city by the same name but in the wrong state, we redid the 20 searches adding 
the state name. If no data were found, we contacted a relevant state official via email or phone with 
an inquiry about their street tree inventory. Datasheets were received and transformed to CSV format 
(if they were not already in that format). We received data on street trees from 64 cities. One city, El 
Paso, had data only in summary format and was therefore excluded from analyses .

Scheme 1. Dataset search pipeline.

Data cleaning
All code is in the zipped folder Source code 1. Before cleaning the data, we ensured that all reported 
trees for each city were located within the greater metropolitan area of the city (for certain inventories, 
many suburbs were reported—some within the greater metropolitan area, others not).

First, we renamed all columns in the received CSV sheets, referring to the metadata and according 
to our standardized definitions (Supplementary file 1). To harmonize tree health and condition data 
across different cities, we inspected metadata from the tree inventories and converted all numeric 
scores to a descriptive scale including ‘excellent’, ‘good’, ‘fair’, ‘poor’, ‘dead’, and ‘dead/dying’. Some 
cities included only three points on this scale (e.g., ‘good’, ‘poor’, ‘dead/dying’) while others included 
five (e.g., ‘excellent’, ‘good’, ‘fair’, ‘poor’, ‘dead’).

Second, we used pandas in Python (McKinney, 2011) to correct typos, non- ASCII characters, vari-
able spellings, date format, units used (we converted all units to metric), address issues, and common 
name format. In some cases, units were not specified for tree diameter at breast height (DBH) and 
tree height; we determined the units based on typical sizes for trees of a particular species. Wherever 
diameter was reported, we assumed it was DBH. We standardized health and condition data across 
cities, preserving the highest granularity available for each city. For our analysis, we converted this 
variable to a binary (see ‘Condition and health’). We created a column called ‘location_type’ to label 
whether a given tree was growing in the built environment or in green space. All of the changes we 
made, and decision points, are preserved in Source code 1.

Third, we checked the scientific names reported using gnr_resolve in the R library taxize (Cham-
berlain and Szöcs, 2013), with the option Best_match_only set to TRUE (Source code 1). Through 
an iterative process, we manually checked the results and corrected typos in the scientific names 
until all names were either a perfect match (N = 1771 species) or partial match with threshold greater 
than 0.75 (N = 453 species). BGS manually reviewed all partial matches to ensure that they were the 
correct species name, and then we programmatically corrected these partial matches (e.g., Magnolia 
grandifolia—which is not a species name of a known tree—was corrected to Magnolia grandiflora, 
and Pheonix canariensus was corrected to its proper spelling of Phoenix canariensis). Because many 
of these tree inventories were crowd- sourced or generated in part through citizen science, such typos 
and misspellings are to be expected.

Some tree inventories reported species by common names only. Therefore, our fourth step in data 
cleaning was to convert common names to scientific names. We generated a lookup table by summa-
rizing all pairings of common and scientific names in the inventories for which both were reported. We 
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manually reviewed the common to scientific name pairings, confirming that all were correct. Then we 
programmatically assigned scientific names to all common names (Source code 1).

Fifth, we assigned “native status” to each tree through reference to the Biota of North America 
Project (Kartesz, 2018), which has collected data on all native and non- native species occurrences 
throughout the US states. Specifically, we determined whether each tree species in a given city was 
naturally occurring in that state, introduced to that state, or that we did not have enough information 
to determine nativity (for cases where only the genus was known).

Sixth, some cities reported only the street address but not latitude and longitude. For these cities, 
we used the OpenCageGeocoder (https://opencagedata.com/) to convert addresses to latitude and 
longitude coordinates (Source code 1). OpenCageGeocoder leverages open data and is used by 
many academic institutions (see https://opencagedata.com/solutions/academia).

Seventh, we trimmed each city dataset to include only the standardized columns we identified in 
Supplementary file 1.

After each stage of data cleaning, we performed manual spot checking to identify any issues.

Environmental variables
We retrieved WorldClim data on 19 bioclimatic variables using the getData function in package raster 
(Hijmans and Etten, 2012) with parameters var="bio" and res = 2.5. We used resolution = 2.5°, and 
as a sensitivity test we confirmed that these environmental values were significantly correlated with 
the same values at 0.5° resolution. We gathered climate variables for each city by extracting the grid 
cell closest to the latitude and longitude of each city in our dataset, and then we performed a PCA on 
the environmental variables.

Species diversity
We calculated effective species counts (the exponent of the Shannon–Weiner index) as our measure of 
species diversity because it incorporates both richness (number of species) and evenness (distribution 
of those species; Kendal et al., 2014), and because it is a metric that behaves naturally and intuitively 
in comparisons between species communities (Jost, 2006). Effective species count is calculated as 
shown in Equation 1, where n is the number of species present and pi is the frequency of a species i.

 e

n∑
i =1

− pi ln
(

pi
)
  (1)

To determine what environmental and sociocultural factors drive species diversity (dependent 
variable: effective species count), we used the olsrr package in R (Hebbali and Hebbali, 2017) to 
compare AIC and adjusted R2 values for all possible models incorporating the following independent 
variables: environmental PCA1, environmental PCA2, environmental PCA1 × environmental PCA2, 
city age, tree city USA (whether or not a city was designated as a tree city USA), city age × tree city 
USA, and the log- transformed number of trees in a given city.

Throughout our analyses, it was necessary to control for different sample sizes (and different, but 
unknown, sampling efforts across cities). To do so, we relied on the rarefaction/extrapolation methods 
developed by Chao and colleagues (Chao et al., 2015; Chao et al., 2014; Chao and Jost, 2012) and 
implemented through the R software package iNext (Hsieh et al., 2016). In short, these methods use 
statistical rarefaction and/or extrapolation to generate comparable estimates of diversity across popu-
lations with different sampling efforts or population sizes, alongside confidence intervals for these 
diversity estimates. iNext performs these tasks for Hill numbers of orders q = 0, 1, and 2. We used two 
techniques in iNext to allow for comparisons across cities (and between parks and urban areas within 
cities). First, we generated asymptotic diversity estimates for each; second, we generated diversity 
estimates for a given standardized population size. For our diversity analyses, the standardized popu-
lation size we used was 37,000 trees (the rounded median of all cities). For analyses of the diversity of 
naturally occurring trees, we used a standardized population size of 10,000 trees (the rounded median 
across cities). For comparisons of the diversity between park and urban areas in a city, we used the 
smaller of the two population sizes (park or urban). In all cases, we also recorded confidence estimates 
and plotted rarefaction/extrapolation curves (Figure 2—source data 1).

To control for variation in how uniformly trees were sampled across a city’s geographic range, we 
developed a procedure to score each city’s spatial coverage (see ‘Spatial structure’).

https://doi.org/10.7554/eLife.77891
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We identified the best- fitting model, and then repeated our analysis under six sensitivity conditions 
to control for differences in population size, sampling effort, spatial coverage, and sample coverage. 
Our sensitivity analyses were as follows: first, with independent variable = effective species as calcu-
lated for a given population of 37,000 trees ; second, independent variable = the asymptotic estimate 
of the effective species number for that city as calculated using iNext; third, the raw effective species 
number; fourth, excluding cities with fewer than 10,000 trees; fifth, excluding cities with <50% spatial 
coverage; sixth, excluding cities with <0.995 sample coverage as calculated by iNext. For the fourth, 
fifth, and sixth models, the independent variable was effective species for a standardized population 
size of 37,000 trees.

We report statistics in Supplementary file 2.

Spatial structure
We wanted to quantify the degree to which trees were spatially clustered by species within a city 
rather than randomly arranged. To do so, we first clustered all trees within each city using hierar-
chical density- based spatial clustering through the hdbscan library in Python (McInnes et al., 2017). 
HDBSCAN, unlike typical methods such as ‘k nearest neighbors’, takes into account the underlying 
spatial structure of the dataset and allows the user to modify parameters in order to find biologically 
meaningful clusters. For city trees, which are often organized along grids or the underlying street 
layout of a city, this method can more meaningfully cluster trees than merely calculating the meters 
between trees and identifying nearest neighbors (which may be close as the crow flies but separated 
from each other by tall buildings). In particular, using the Manhattan metric rather than Euclidean 
metrics improves clustering analysis in cities (which tend to be organized along city blocks). For further 
discussion of why hbdscan is preferable to other clustering metrics, see Berba, 2020; Leland et al., 
2016; McInnes et al., 2017.

We converted latitude and longitude values within a city to their planar projection equivalents (in 
Universal Transverse Mercator [UTM]) using the from_latlon function in Python package UTM (Bieniek 
et al., 2016). In total, we had N = 59 cities with spatial information about their trees.

We then clustered all the trees in a given city using HDBSCAN with parameters min_cluster_size 
= 30, min_samples = 10, metric = ‘manhattan’, cluster_selection_epsilon = 0.0004, cluster_selec-
tion_method = ‘eom’; we arrived at these parameters through trial and error with a sample set of 
cities.

Once we had all trees in a city assigned to spatial clusters (or, for trees far from the clusters, 
notated as ‘noise’ and eliminated from further analysis), we used a bootstrapping method to quan-
tify the degree of homogenization within spatial clusters. For each cluster of trees (e.g., a cluster 
of 120 trees in Pittsburgh, PA) we (1) calculated the observed effective species number; (2) we 
randomly resampled 120 trees from Pittsburgh’s entire 45,703- tree- dataset and calculated the 
effective species number of that random group of 120 trees; (3) we repeated step (2) 500 times; (4) 
we recorded the mean, median, and interquartile range of effective species counts from those 500 
samples; and (5) we divided the expected effective species (median effective species count from 
all 500 samples) by the observed effective species count in the actual spatial cluster of 120 trees. 
The resulting value therefore quantifies the degree to which a spatial cluster is a random set of that 
city’s tree species (values close to 100%) or a nonrandom set of same- species clusters (values less 
than 100%).

Cities varied in how uniformly trees were sampled across a city’s geography. To control for this 
variation, we generated a ‘spatial coverage’ score using the following procedure. First, we divided 
each city into grid cells of 0.005° latitude by 0.005° longitude, excluding water features and truncating 
grid cells by the city’s borders, using the R packages rgdal (Bivand et al., 2015) and raster (Hijmans 
and Etten, 2012; Hijmans et al., 2013). Second, we counted the number of trees in each grid cell. 
Third, because some grid cells were smaller in terms of actual area (e.g., because some grid cells were 
located at the edge of a city, and because degrees do not translate consistently to m2), we calculated 
the adjusted number of trees per grid cell (raw number of trees × grid cell area/(maximum grid cell 
area)). Fourth, we calculated the percent of grid cells with no trees as well as the skew and kurtosis of 
adjusted number of trees in all occupied cells (using functions from R package moments, Komsta and 
Novomestky, 2015). Fifth, we plotted all cities with trees assigned to grid cells and saved the raw and 
summary spatial coverage data (Figure 4—source data 3).

https://doi.org/10.7554/eLife.77891
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Nativity Status
To determine whether a tree was introduced or naturally occurring (“native”) in the state in which it 
appeared, we referred to the state- specific lists of native species from the Biota of North America 
Project. Each tree species was therefore coded as naturally_occurring, introduced, or no_info. Some 
tree records included only genus- level data, which was coded as ‘no_info’.

We performed beta regression models with a logit link function using the package betareg in R 
(Zeileis et al., 2019), with percent naturally occurring trees in a given city as the dependent variable. 
We assumed the precision parameter ϕ did not depend on any regressors. We started with a model 
incorporating only environmental variables, based on the substantial evidence that climate impacts 
the diversity of naturally occurring species, and then added one variable at a time to determine 
whether the additional variables improved the model’s performance (tested through the lrtest() func-
tion from the package lmtest, Hothorn et  al., 2015). The best model incorporated the following 
dependent variables: environmental PCA1, environmental PCA2, log(number trees), and city age with 
no interaction terms.

We reran the models under four sensitivity tests to ensure that sampling effort, spatial coverage, 
sample size, and outliers did not impact our results. First, we identified and removed the outliers 
Honolulu, HI and Miami, FL. Second, we excluded all cities with fewer than 10,000 trees. Third, we 
excluded all cities with <50% spatial coverage. Fourth, we excluded all cities with <0.995 sample 
coverage as estimated in the iNext software package.

Condition and health
We asked whether a tree’s condition within a given city was correlated with size (DBH), location type 
(whether in the built environment or in green space such as a park), and nativity status. Fifteen cities 
had two or more of these variables with adequate sample sizes, and we ran separate logistic regres-
sion models by city because cities do not always score condition on comparable scales. We coded 
tree condition as a binary variable, where ‘excellent’, ‘good’, or ‘fair’ condition trees were coded as 1 
and ‘poor’, ‘dead’, and ‘dead/dying’ trees were coded as 0. We used function glm2() in the R package 
glm2 (Marschner, 2011), and for each model determined whether it was a better fit than an empty 
model. We calculated odds ratios, confidence intervals, and p values (see Supplementary file 4).

Similarity between tree communities
How similar are species compositions across cities? For N = 1953 city–city comparisons of street tree 
communities, we could calculate weighted measures of similarity because we had frequency data. 
We calculated similarity scores for the entire tree population, the naturally occurring trees only, and 
the introduced trees only. We used chi- square distance metrics on species frequency data, and we 
controlled for different population sizes (and potentially, sampling efforts) between cities by subsam-
pling the larger city 50 times to match the smaller city’s tree population size and calculating average 
metrics. In this manner, we controlled for differences in sample size. Chi- square similarity was calcu-
lated as in Equation 2, where n is the total number of species present in either city, x and y are vectors 
of species frequencies for the two cities being compared, and for each species i, xi is the frequency 
of that species in city x and yi the frequency of the same species in city y. Chi- square similarity is one 
minus the chi- square distance.

 
1 − 1

2

n∑
i=1

(
xi − yi

)2
(

xi + yi
)

  
(2)

We calculated environmental similarity as one minus the normalized euclidean distance in our PCA 
plot of environmental variables.

To determine whether city species similarity was driven by naturally occurring species, introduced 
species, or neither, we performed a two- sample paired t.test using the function t.test in R between 
the naturally occurring species chi- squared similarity scores and the all- species chi- squared similarity 
scores. Because the variables were not perfectly normally distributed (although they were even and 
symmetric), we also performed a non- parametric Wilcoxon signed- rank test. We plotted a histogram 
of the difference between each pair of city’s chi squared scores for (1) all species and (2) naturally 
occurring species only.
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To determine whether the environment was a stronger driver of naturally occurring species 
communities versus all species communities, we compared correlation scores. Specifically, we used 
the function  cor. test in R to calculate the Pearson’s product- moment correlation between chi- squared 
similarity and environmental similarity for (1) naturally occurring species only and (2) all species. We 
compared the all- species- environment correlation to the naturally occurring- species- environment by 
calculating Pearson and Filon’s z using the cocor package in R (Diedenhofen and Musch, 2015) for 
two overlapping correlations based on dependent groups (calculation takes into account correlation 
between chisq_native and chisq_all, among other things).

Income and urban heat islands
To demonstrate the value of our dataset for analyses of social, economic, and physical variables, 
we mapped several such variables for Washington, DC using packages raster (Hijmans and Etten, 
2012), sf (Pebesma, 2018), and tidycensus (Walker et al., 2021) in R. First, we split our trees data 
by census tract and mapped species richness and effective species count within each tract; next, we 
extracted median household income data and plotted it for each census tract (Walker, 2022). Finally, 
we downloaded LANDSAT data on surface temperatures in DC for July 2018 from the DC Open Data 
portal (https://opendata.dc.gov/documents/land-surface-temperature-july-2018/explore; CC- BY- 4.0) 
and plotted this, marking heat islands (temperature >95°F) in black (Jolly, 2019).
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size, smaller trees (lower diameter at breast height) tended to have better condition (12 of 18 cities). 
For location type, trees in the built environment tended to have better condition than those in parks 
(four of eight cities). For native status, results were mixed (naturally occurring trees had no difference 
in condition for 6 of 19 cities, worse condition in 7 cities, and better condition in 6 cities). Significant 
odds ratios and models are marked with *p < 0.05, **p < 0.005, ***p < 0.0005, or NS: p ≥ 0.05.

•  Supplementary file 5. Loadings for the environmental principal component analysis in Figure 4A. 
The Bioclim variables having to do with precipitation are negatively correlated with PCA1 and 
positively correlated with PCA2. When PCA1 is high and PCA2 is low, precipitation is higher. 
Likewise, when PCA1 is low and PCA2 is high, precipitation is lower. For example, refer to loadings 
for Annual_Precip and Precip_Driest_Month.

•  Transparent reporting form 

•  Source code 1.  Code_ for_ Data_ Cleaning. zip. This zipped file includes all code sheets in Python 
and R, and instructions, for the full data cleaning procedure (see ‘Materials and methods’, Data 
Cleaning).

•  Source code 2.  Code_ for_ Analysis_ and_ Plotting. zip. This zipped file includes all code used to 
analyze and plot the results reported in this paper.

•  Source code 3.  Calculate_ Effective_ Species_ Excel_ Tool. xlsx. We developed an Excel Spreadsheet 
which calculates effective species counts, a robust measure of species diversity, from a list of all trees 
(each row is an individual tree).

•  Source code 4.  Check_ Native_ Status_ of_ Species_ Excel_ Tool. xlsx. This Excel Workbook allows 
readers to input their list of species, select a state, and receive a corresponding list of whether or 
not each species is native to that state (based on BONAP designations).

Data availability
All data and code are available in the main text or the supplementary materials. The datasheets of city 
tree information from 63 cities Figure 1- source data 1 (63 .csv files) have been uploaded to Dryad: 
https://doi.org/10.5061/dryad.2jm63xsrf.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

McCoy DE, Goulet- 
Scott B, Meng W, 
Atahan B, Kiros H, 
Nishino M, Kartesz J

2022 A dataset of 5 million city 
trees from 63 US cities: 
species, location, nativity 
status, health, and more

https:// dx. doi. org/ 10. 
5061/ dryad. 2jm63xsrf

Dryad Digital Repository, 
10.5061/dryad.2jm63xsrf
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